Cargando…
Fitness Shifts the Balance of BDNF and IL-6 from Inflammation to Repair among People with Progressive Multiple Sclerosis
Physical sedentarism is linked to elevated levels of circulating cytokines, whereas exercise upregulates growth-promoting proteins such as brain-derived neurotrophic factor (BDNF). The shift towards a ‘repair’ phenotype could protect against neurodegeneration, especially in diseases such as multiple...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066063/ https://www.ncbi.nlm.nih.gov/pubmed/33810574 http://dx.doi.org/10.3390/biom11040504 |
_version_ | 1783682487118987264 |
---|---|
author | Devasahayam, Augustine Joshua Kelly, Liam Patrick Williams, John Bradley Moore, Craig Stephen Ploughman, Michelle |
author_facet | Devasahayam, Augustine Joshua Kelly, Liam Patrick Williams, John Bradley Moore, Craig Stephen Ploughman, Michelle |
author_sort | Devasahayam, Augustine Joshua |
collection | PubMed |
description | Physical sedentarism is linked to elevated levels of circulating cytokines, whereas exercise upregulates growth-promoting proteins such as brain-derived neurotrophic factor (BDNF). The shift towards a ‘repair’ phenotype could protect against neurodegeneration, especially in diseases such as multiple sclerosis (MS). We investigated whether having higher fitness or participating in an acute bout of maximal exercise would shift the balance of BDNF and interleukin-6 (IL-6) in serum samples of people with progressive MS (n = 14), compared to matched controls (n = 8). Participants performed a maximal graded exercise test on a recumbent stepper, and blood samples were collected at rest and after the test. We assessed walking speed, fatigue, and maximal oxygen consumption ([Formula: see text]). People with MS achieved about 50% lower [Formula: see text] (p = 0.003) than controls. At rest, there were no differences in BDNF between MS and controls; however, IL-6 was significantly higher in MS. Higher [Formula: see text] was associated with a shift in BDNF/IL-6 ratio from inflammation to repair (R = 0.7, p = 0.001) when considering both groups together. In the MS group, greater ability to upregulate BDNF was associated with faster walking speed and lower vitality. We present evidence that higher fitness indicates a shift in the balance of blood biomarkers towards a repair phenotype in progressive MS. |
format | Online Article Text |
id | pubmed-8066063 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80660632021-04-25 Fitness Shifts the Balance of BDNF and IL-6 from Inflammation to Repair among People with Progressive Multiple Sclerosis Devasahayam, Augustine Joshua Kelly, Liam Patrick Williams, John Bradley Moore, Craig Stephen Ploughman, Michelle Biomolecules Article Physical sedentarism is linked to elevated levels of circulating cytokines, whereas exercise upregulates growth-promoting proteins such as brain-derived neurotrophic factor (BDNF). The shift towards a ‘repair’ phenotype could protect against neurodegeneration, especially in diseases such as multiple sclerosis (MS). We investigated whether having higher fitness or participating in an acute bout of maximal exercise would shift the balance of BDNF and interleukin-6 (IL-6) in serum samples of people with progressive MS (n = 14), compared to matched controls (n = 8). Participants performed a maximal graded exercise test on a recumbent stepper, and blood samples were collected at rest and after the test. We assessed walking speed, fatigue, and maximal oxygen consumption ([Formula: see text]). People with MS achieved about 50% lower [Formula: see text] (p = 0.003) than controls. At rest, there were no differences in BDNF between MS and controls; however, IL-6 was significantly higher in MS. Higher [Formula: see text] was associated with a shift in BDNF/IL-6 ratio from inflammation to repair (R = 0.7, p = 0.001) when considering both groups together. In the MS group, greater ability to upregulate BDNF was associated with faster walking speed and lower vitality. We present evidence that higher fitness indicates a shift in the balance of blood biomarkers towards a repair phenotype in progressive MS. MDPI 2021-03-26 /pmc/articles/PMC8066063/ /pubmed/33810574 http://dx.doi.org/10.3390/biom11040504 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Devasahayam, Augustine Joshua Kelly, Liam Patrick Williams, John Bradley Moore, Craig Stephen Ploughman, Michelle Fitness Shifts the Balance of BDNF and IL-6 from Inflammation to Repair among People with Progressive Multiple Sclerosis |
title | Fitness Shifts the Balance of BDNF and IL-6 from Inflammation to Repair among People with Progressive Multiple Sclerosis |
title_full | Fitness Shifts the Balance of BDNF and IL-6 from Inflammation to Repair among People with Progressive Multiple Sclerosis |
title_fullStr | Fitness Shifts the Balance of BDNF and IL-6 from Inflammation to Repair among People with Progressive Multiple Sclerosis |
title_full_unstemmed | Fitness Shifts the Balance of BDNF and IL-6 from Inflammation to Repair among People with Progressive Multiple Sclerosis |
title_short | Fitness Shifts the Balance of BDNF and IL-6 from Inflammation to Repair among People with Progressive Multiple Sclerosis |
title_sort | fitness shifts the balance of bdnf and il-6 from inflammation to repair among people with progressive multiple sclerosis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066063/ https://www.ncbi.nlm.nih.gov/pubmed/33810574 http://dx.doi.org/10.3390/biom11040504 |
work_keys_str_mv | AT devasahayamaugustinejoshua fitnessshiftsthebalanceofbdnfandil6frominflammationtorepairamongpeoplewithprogressivemultiplesclerosis AT kellyliampatrick fitnessshiftsthebalanceofbdnfandil6frominflammationtorepairamongpeoplewithprogressivemultiplesclerosis AT williamsjohnbradley fitnessshiftsthebalanceofbdnfandil6frominflammationtorepairamongpeoplewithprogressivemultiplesclerosis AT moorecraigstephen fitnessshiftsthebalanceofbdnfandil6frominflammationtorepairamongpeoplewithprogressivemultiplesclerosis AT ploughmanmichelle fitnessshiftsthebalanceofbdnfandil6frominflammationtorepairamongpeoplewithprogressivemultiplesclerosis |