Cargando…

Properties of Surface Heating Textile for Functional Warm Clothing Based on a Composite Heating Element with a Positive Temperature Coefficient

A high-stretch positive temperature coefficient (PTC) surface heating textile (PTC-SHT) was fabricated using a composite of PTC powder and multiwall carbon nanotubes (MWCNTs). The PTC-SHT (heating area = 100 × 100 mm(2)) was produced by screen-printing the PTC-MWCNT composite paste onto a high-stret...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Han Na, Jee, Seung Hyun, Ko, Jaehwan, Kim, Dong Joo, Kim, Sun Hee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066108/
https://www.ncbi.nlm.nih.gov/pubmed/33916091
http://dx.doi.org/10.3390/nano11040904
Descripción
Sumario:A high-stretch positive temperature coefficient (PTC) surface heating textile (PTC-SHT) was fabricated using a composite of PTC powder and multiwall carbon nanotubes (MWCNTs). The PTC-SHT (heating area = 100 × 100 mm(2)) was produced by screen-printing the PTC-MWCNT composite paste onto a high-stretch textile with embroidered electrodes. Overall, the temperature increased to 56.1 °C with a power consumption of 5 W over 7 min. Subsequently, the surface temperature of the PTC-SHT remained constant despite the continued decrease in power consumption. This indicated that heating was accompanied by an increase in resistance of the PTC-SHT, which is typical of this process—i.e., heating to a constant temperature under a constant voltage over an extended period of time. In addition, 4.63 W power was required to heat the PTC-SHT surface from an external temperature of 5 to 45 °C in 10 min, after which stable low-temperature heat generation behavior was observed at a constant temperature of 50 °C, which was maintained over 40 min. In contrast, negative temperature coefficient (NTC) behavior has been observed in an NTC-SHT consisting of only MWCNTs, where a slow heating rate in the initial stage of power application and a continuous increase in surface temperature and power consumption were noted. The PTC-SHT consumed less power for heat generation than the NTC-SHT and exhibited rapid heating behavior in the initial stage of power application. The heat generation characteristics of the PTC-SHT were maintained at 95% after 100,000 cycles of 20% stretch–contraction testing, and the heating temperature remained uniformly distributed within ± 2 °C across the entire heating element. These findings demonstrated that an SHT with PTC characteristics is highly suitable for functional warm clothing applications that require low power consumption, rapid heating, stable warmth, and high durability.