Cargando…
Mixture-Based Probabilistic Graphical Models for the Label Ranking Problem †
The goal of the Label Ranking (LR) problem is to learn preference models that predict the preferred ranking of class labels for a given unlabeled instance. Different well-known machine learning algorithms have been adapted to deal with the LR problem. In particular, fine-tuned instance-based algorit...
Autores principales: | Rodrigo, Enrique G., Alfaro, Juan C., Aledo, Juan A., Gámez, José A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066248/ https://www.ncbi.nlm.nih.gov/pubmed/33807440 http://dx.doi.org/10.3390/e23040420 |
Ejemplares similares
-
Advances in probabilistic graphical models
por: Lucas, Peter, et al.
Publicado: (2007) -
Allocation Variable-Based Probabilistic Algorithm to Deal with Label Switching Problem in Bayesian Mixture Models
por: Pan, Jia-Chiun, et al.
Publicado: (2015) -
Probabilistic graphical models : principles and techniques /
por: Koller, Daphne
Publicado: (2009) -
Learning probabilistic graphical models in R: familiarize yourself with probabilistic graphical models through real-world problems and illustrative code examples in R
por: Bellot, David
Publicado: (2016) -
Probabilistic graphical models relate immune status with response to neoadjuvant chemotherapy in breast cancer
por: Zapater-Moros, Andrea, et al.
Publicado: (2018)