Cargando…
Circ_0004104 knockdown alleviates oxidized low-density lipoprotein-induced dysfunction in vascular endothelial cells through targeting miR-328-3p/TRIM14 axis in atherosclerosis
BACKGROUND: Circular RNAs have shown important regulatory roles in cardiovascular diseases, containing atherosclerosis (AS). We intended to explore the role of circ_0004104 in AS using oxidized low-density lipoprotein (ox-LDL)-induced vascular endothelial cells and its associated mechanism. METHODS:...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066471/ https://www.ncbi.nlm.nih.gov/pubmed/33892646 http://dx.doi.org/10.1186/s12872-021-02012-7 |
_version_ | 1783682578854707200 |
---|---|
author | Zhang, Chi Wang, Liyue Shen, Ying |
author_facet | Zhang, Chi Wang, Liyue Shen, Ying |
author_sort | Zhang, Chi |
collection | PubMed |
description | BACKGROUND: Circular RNAs have shown important regulatory roles in cardiovascular diseases, containing atherosclerosis (AS). We intended to explore the role of circ_0004104 in AS using oxidized low-density lipoprotein (ox-LDL)-induced vascular endothelial cells and its associated mechanism. METHODS: Real-time quantitative polymerase chain reaction and Western blot assay were conducted to analyze RNA levels and protein levels, respectively. Cell viability, apoptosis, angiogenic ability and inflammatory response were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay, flow cytometry, capillary-like network formation assay and enzyme-linked immunosorbent assay, respectively. Cell oxidative stress was assessed using commercial kits. Dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA-pull down assay were performed to verify the intermolecular interaction. RESULTS: ox-LDL exposure up-regulated the level of circ_0004104 in HUVECs. ox-LDL exposure suppressed cell viability and angiogenic ability whereas promoted the apoptosis, inflammation and oxidative stress of HUVECs partly through up-regulating circ_0004104. MicroRNA-328-3p (miR-328-3p) was confirmed as a target of circ_0004104. MiR-328-3p interference largely reversed circ_0004104 silencing-mediated effects in HUVECs upon ox-LDL exposure. MiR-328-3p interacted with the 3′ untranslated region of tripartite motif 14, and circ_0004104 positively regulated TRIM14 expression by sponging miR-328-3p. TRIM14 overexpression largely overturned miR-328-3p accumulation-induced influences in HUVECs upon ox-LDL exposure. CONCLUSION: Circ_0004104 knockdown attenuated ox-LDL-induced dysfunction in HUVECs via miR-328-3p-mediated regulation of TRIM14. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12872-021-02012-7. |
format | Online Article Text |
id | pubmed-8066471 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-80664712021-04-26 Circ_0004104 knockdown alleviates oxidized low-density lipoprotein-induced dysfunction in vascular endothelial cells through targeting miR-328-3p/TRIM14 axis in atherosclerosis Zhang, Chi Wang, Liyue Shen, Ying BMC Cardiovasc Disord Research Article BACKGROUND: Circular RNAs have shown important regulatory roles in cardiovascular diseases, containing atherosclerosis (AS). We intended to explore the role of circ_0004104 in AS using oxidized low-density lipoprotein (ox-LDL)-induced vascular endothelial cells and its associated mechanism. METHODS: Real-time quantitative polymerase chain reaction and Western blot assay were conducted to analyze RNA levels and protein levels, respectively. Cell viability, apoptosis, angiogenic ability and inflammatory response were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay, flow cytometry, capillary-like network formation assay and enzyme-linked immunosorbent assay, respectively. Cell oxidative stress was assessed using commercial kits. Dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA-pull down assay were performed to verify the intermolecular interaction. RESULTS: ox-LDL exposure up-regulated the level of circ_0004104 in HUVECs. ox-LDL exposure suppressed cell viability and angiogenic ability whereas promoted the apoptosis, inflammation and oxidative stress of HUVECs partly through up-regulating circ_0004104. MicroRNA-328-3p (miR-328-3p) was confirmed as a target of circ_0004104. MiR-328-3p interference largely reversed circ_0004104 silencing-mediated effects in HUVECs upon ox-LDL exposure. MiR-328-3p interacted with the 3′ untranslated region of tripartite motif 14, and circ_0004104 positively regulated TRIM14 expression by sponging miR-328-3p. TRIM14 overexpression largely overturned miR-328-3p accumulation-induced influences in HUVECs upon ox-LDL exposure. CONCLUSION: Circ_0004104 knockdown attenuated ox-LDL-induced dysfunction in HUVECs via miR-328-3p-mediated regulation of TRIM14. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12872-021-02012-7. BioMed Central 2021-04-23 /pmc/articles/PMC8066471/ /pubmed/33892646 http://dx.doi.org/10.1186/s12872-021-02012-7 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Zhang, Chi Wang, Liyue Shen, Ying Circ_0004104 knockdown alleviates oxidized low-density lipoprotein-induced dysfunction in vascular endothelial cells through targeting miR-328-3p/TRIM14 axis in atherosclerosis |
title | Circ_0004104 knockdown alleviates oxidized low-density lipoprotein-induced dysfunction in vascular endothelial cells through targeting miR-328-3p/TRIM14 axis in atherosclerosis |
title_full | Circ_0004104 knockdown alleviates oxidized low-density lipoprotein-induced dysfunction in vascular endothelial cells through targeting miR-328-3p/TRIM14 axis in atherosclerosis |
title_fullStr | Circ_0004104 knockdown alleviates oxidized low-density lipoprotein-induced dysfunction in vascular endothelial cells through targeting miR-328-3p/TRIM14 axis in atherosclerosis |
title_full_unstemmed | Circ_0004104 knockdown alleviates oxidized low-density lipoprotein-induced dysfunction in vascular endothelial cells through targeting miR-328-3p/TRIM14 axis in atherosclerosis |
title_short | Circ_0004104 knockdown alleviates oxidized low-density lipoprotein-induced dysfunction in vascular endothelial cells through targeting miR-328-3p/TRIM14 axis in atherosclerosis |
title_sort | circ_0004104 knockdown alleviates oxidized low-density lipoprotein-induced dysfunction in vascular endothelial cells through targeting mir-328-3p/trim14 axis in atherosclerosis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066471/ https://www.ncbi.nlm.nih.gov/pubmed/33892646 http://dx.doi.org/10.1186/s12872-021-02012-7 |
work_keys_str_mv | AT zhangchi circ0004104knockdownalleviatesoxidizedlowdensitylipoproteininduceddysfunctioninvascularendothelialcellsthroughtargetingmir3283ptrim14axisinatherosclerosis AT wangliyue circ0004104knockdownalleviatesoxidizedlowdensitylipoproteininduceddysfunctioninvascularendothelialcellsthroughtargetingmir3283ptrim14axisinatherosclerosis AT shenying circ0004104knockdownalleviatesoxidizedlowdensitylipoproteininduceddysfunctioninvascularendothelialcellsthroughtargetingmir3283ptrim14axisinatherosclerosis |