Cargando…

Bombesin-Tethered Reactive Oxygen Species (ROS)-Responsive Nanoparticles for Monomethyl Auristatin F (MMAF) Delivery

Dolastatin derivatives, represented by monomethylauristatin E (MMAE), have been translated in clinic with a form of antibody–drug conjugate; however, their potential in nanoparticle systems has not been well established due to the potential risk of immature release of extremely high cytotoxic dolast...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Jihoon, Kim, Jee Seon, Min, Kyung Hyun, Kim, Young-Hwa, Chen, Xiaoyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066503/
https://www.ncbi.nlm.nih.gov/pubmed/33805342
http://dx.doi.org/10.3390/bioengineering8040043
Descripción
Sumario:Dolastatin derivatives, represented by monomethylauristatin E (MMAE), have been translated in clinic with a form of antibody–drug conjugate; however, their potential in nanoparticle systems has not been well established due to the potential risk of immature release of extremely high cytotoxic dolastatin drugs during blood circulation. Herein, we rationally propose monomethylauristatin F (MMAF), a dolastatin-derived, loaded nanoparticle system composed of bombesin (BBN)-tethered ROS-responsive micelle system (BBN-PEG-PPADT) to achieve efficient anticancer therapy with targeted and efficient delivery of MMAF. The developed MMAF-loaded BBN-PEG-PPADT micelles (MMAF@BBN-PEG-PPADT) exhibited improved cellular uptake via interactions between BBN and gastrin-releasing peptide receptors on the cancer cells and the intracellular burst release of MMAF, owing to the ROS-responsive disruption, which allowed the efficient anticancer effects of MMAF in vitro. This study suggests the potential of nanoparticle systems in the delivery of dolastatin drugs.