Cargando…

Assessing Age-Related Gray Matter Differences in Young Adults with Voxel-Based Morphometry: The Effect of Field Strengths

Knowing the patterns of brain differences with age in the young population could lead to a better understanding of the causes of certain psychiatric disorders; however, relevant information is insufficient. Here, a pattern of regional gray matter (GM) that changed with age in a young cohort aged 20–...

Descripción completa

Detalles Bibliográficos
Autores principales: Su, Feng-Yi, Chen, Jyun-Ru, Chen, Chun-Ming, Huang, Yen-Chih, Peng, Shin-Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066590/
https://www.ncbi.nlm.nih.gov/pubmed/33807399
http://dx.doi.org/10.3390/brainsci11040447
Descripción
Sumario:Knowing the patterns of brain differences with age in the young population could lead to a better understanding of the causes of certain psychiatric disorders; however, relevant information is insufficient. Here, a pattern of regional gray matter (GM) that changed with age in a young cohort aged 20–30 years was provided. Extending from previous age studies, all participants were imaged at both 1.5 T and 3 T to address the question of how far the field strength influences results. Fifty-nine young participants aged 20–30 years were scanned at both 1.5 T and 3 T. Voxel-based morphometry (VBM) was used to estimate the GM volume. Some brain regions showed a significant field strength-dependent difference in GM volume. VBM uncovered a significantly age-related increase in the GM volume in the left visual-associated area at 3 T, which was not detected at 1.5 T. In addition, voxels at 1.5 T that revealed a significant age-related reduction in the GM volume were found in the right cerebellum. In conclusion, age-related differences in human brain morphology could even be detected in a young cohort aged 20–30 years; however, the results varied across field strengths. Thus, field strength should be considered an important factor when comparing age-specific brain differences across studies.