Cargando…

Does Green Really Mean Go? Increasing the Fraction of Green Photons Promotes Growth of Tomato but Not Lettuce or Cucumber

The photon flux in the green wavelength region is relatively enriched in shade and the photon flux in the blue region is selectively filtered. In sole source lighting environments, increasing the fraction of blue typically decreases stem elongation and leaf expansion, and smaller leaves reduce photo...

Descripción completa

Detalles Bibliográficos
Autores principales: Kusuma, Paul, Swan, Boston, Bugbee, Bruce
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066606/
https://www.ncbi.nlm.nih.gov/pubmed/33801682
http://dx.doi.org/10.3390/plants10040637
Descripción
Sumario:The photon flux in the green wavelength region is relatively enriched in shade and the photon flux in the blue region is selectively filtered. In sole source lighting environments, increasing the fraction of blue typically decreases stem elongation and leaf expansion, and smaller leaves reduce photon capture and yield. Photons in the green region reverse these blue reductions through the photoreceptor cryptochrome in Arabidopsis thaliana, but studies in other species have not consistently shown the benefits of photons in the green region on leaf expansion and growth. Spectral effects can interact with total photon flux. Here, we report the effect of the fraction of photons in the blue (10 to 30%) and green (0 to 50%) regions at photosynthetic photon flux densities of 200 and 500 µmol m(−2) s(−1) in lettuce, cucumber and tomato. As expected, increasing the fraction of photons in the blue region consistently decreased leaf area and dry mass. By contrast, large changes in the fraction of photons in the green region had minimal effects on leaf area and dry mass in lettuce and cucumber. Photons in the green region were more potent at a lower fraction of photons in the blue region. Photons in the green region increased stem and petiole length in cucumber and tomato, which is a classic shade avoidance response. These results suggest that high-light crop species might respond to the fraction of photons in the green region with either shade tolerance (leaf expansion) or shade avoidance (stem elongation).