Cargando…

The BRAF P.V600E Mutation Status of Melanoma Lung Metastases Cannot Be Discriminated on Computed Tomography by LIDC Criteria nor Radiomics Using Machine Learning

Patients with BRAF mutated (BRAF-mt) metastatic melanoma benefit significantly from treatment with BRAF inhibitors. Currently, the BRAF status is determined on archival tumor tissue or on fresh tumor tissue from an invasive biopsy. The aim of this study was to evaluate whether radiomics can predict...

Descripción completa

Detalles Bibliográficos
Autores principales: Angus, Lindsay, Starmans, Martijn P. A., Rajicic, Ana, Odink, Arlette E., Jalving, Mathilde, Niessen, Wiro J., Visser, Jacob J., Sleijfer, Stefan, Klein, Stefan, van der Veldt, Astrid A. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066683/
https://www.ncbi.nlm.nih.gov/pubmed/33915880
http://dx.doi.org/10.3390/jpm11040257
_version_ 1783682626315354112
author Angus, Lindsay
Starmans, Martijn P. A.
Rajicic, Ana
Odink, Arlette E.
Jalving, Mathilde
Niessen, Wiro J.
Visser, Jacob J.
Sleijfer, Stefan
Klein, Stefan
van der Veldt, Astrid A. M.
author_facet Angus, Lindsay
Starmans, Martijn P. A.
Rajicic, Ana
Odink, Arlette E.
Jalving, Mathilde
Niessen, Wiro J.
Visser, Jacob J.
Sleijfer, Stefan
Klein, Stefan
van der Veldt, Astrid A. M.
author_sort Angus, Lindsay
collection PubMed
description Patients with BRAF mutated (BRAF-mt) metastatic melanoma benefit significantly from treatment with BRAF inhibitors. Currently, the BRAF status is determined on archival tumor tissue or on fresh tumor tissue from an invasive biopsy. The aim of this study was to evaluate whether radiomics can predict the BRAF status in a non-invasive manner. Patients with melanoma lung metastases, known BRAF status, and a pretreatment computed tomography scan were included. After semi-automatic annotation of the lung lesions (maximum two per patient), 540 radiomics features were extracted. A chest radiologist scored all segmented lung lesions according to the Lung Image Database Consortium (LIDC) criteria. Univariate analysis was performed to assess the predictive value of each feature for BRAF mutation status. A combination of various machine learning methods was used to develop BRAF decision models based on the radiomics features and LIDC criteria. A total of 169 lung lesions from 103 patients (51 BRAF-mt; 52 BRAF wild type) were included. There were no features with a significant discriminative value in the univariate analysis. Models based on radiomics features and LIDC criteria both performed as poorly as guessing. Hence, the BRAF mutation status in melanoma lung metastases cannot be predicted using radiomics features or visually scored LIDC criteria.
format Online
Article
Text
id pubmed-8066683
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-80666832021-04-25 The BRAF P.V600E Mutation Status of Melanoma Lung Metastases Cannot Be Discriminated on Computed Tomography by LIDC Criteria nor Radiomics Using Machine Learning Angus, Lindsay Starmans, Martijn P. A. Rajicic, Ana Odink, Arlette E. Jalving, Mathilde Niessen, Wiro J. Visser, Jacob J. Sleijfer, Stefan Klein, Stefan van der Veldt, Astrid A. M. J Pers Med Article Patients with BRAF mutated (BRAF-mt) metastatic melanoma benefit significantly from treatment with BRAF inhibitors. Currently, the BRAF status is determined on archival tumor tissue or on fresh tumor tissue from an invasive biopsy. The aim of this study was to evaluate whether radiomics can predict the BRAF status in a non-invasive manner. Patients with melanoma lung metastases, known BRAF status, and a pretreatment computed tomography scan were included. After semi-automatic annotation of the lung lesions (maximum two per patient), 540 radiomics features were extracted. A chest radiologist scored all segmented lung lesions according to the Lung Image Database Consortium (LIDC) criteria. Univariate analysis was performed to assess the predictive value of each feature for BRAF mutation status. A combination of various machine learning methods was used to develop BRAF decision models based on the radiomics features and LIDC criteria. A total of 169 lung lesions from 103 patients (51 BRAF-mt; 52 BRAF wild type) were included. There were no features with a significant discriminative value in the univariate analysis. Models based on radiomics features and LIDC criteria both performed as poorly as guessing. Hence, the BRAF mutation status in melanoma lung metastases cannot be predicted using radiomics features or visually scored LIDC criteria. MDPI 2021-04-01 /pmc/articles/PMC8066683/ /pubmed/33915880 http://dx.doi.org/10.3390/jpm11040257 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Angus, Lindsay
Starmans, Martijn P. A.
Rajicic, Ana
Odink, Arlette E.
Jalving, Mathilde
Niessen, Wiro J.
Visser, Jacob J.
Sleijfer, Stefan
Klein, Stefan
van der Veldt, Astrid A. M.
The BRAF P.V600E Mutation Status of Melanoma Lung Metastases Cannot Be Discriminated on Computed Tomography by LIDC Criteria nor Radiomics Using Machine Learning
title The BRAF P.V600E Mutation Status of Melanoma Lung Metastases Cannot Be Discriminated on Computed Tomography by LIDC Criteria nor Radiomics Using Machine Learning
title_full The BRAF P.V600E Mutation Status of Melanoma Lung Metastases Cannot Be Discriminated on Computed Tomography by LIDC Criteria nor Radiomics Using Machine Learning
title_fullStr The BRAF P.V600E Mutation Status of Melanoma Lung Metastases Cannot Be Discriminated on Computed Tomography by LIDC Criteria nor Radiomics Using Machine Learning
title_full_unstemmed The BRAF P.V600E Mutation Status of Melanoma Lung Metastases Cannot Be Discriminated on Computed Tomography by LIDC Criteria nor Radiomics Using Machine Learning
title_short The BRAF P.V600E Mutation Status of Melanoma Lung Metastases Cannot Be Discriminated on Computed Tomography by LIDC Criteria nor Radiomics Using Machine Learning
title_sort braf p.v600e mutation status of melanoma lung metastases cannot be discriminated on computed tomography by lidc criteria nor radiomics using machine learning
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066683/
https://www.ncbi.nlm.nih.gov/pubmed/33915880
http://dx.doi.org/10.3390/jpm11040257
work_keys_str_mv AT anguslindsay thebrafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning
AT starmansmartijnpa thebrafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning
AT rajicicana thebrafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning
AT odinkarlettee thebrafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning
AT jalvingmathilde thebrafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning
AT niessenwiroj thebrafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning
AT visserjacobj thebrafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning
AT sleijferstefan thebrafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning
AT kleinstefan thebrafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning
AT vanderveldtastridam thebrafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning
AT anguslindsay brafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning
AT starmansmartijnpa brafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning
AT rajicicana brafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning
AT odinkarlettee brafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning
AT jalvingmathilde brafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning
AT niessenwiroj brafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning
AT visserjacobj brafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning
AT sleijferstefan brafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning
AT kleinstefan brafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning
AT vanderveldtastridam brafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning