Cargando…
The BRAF P.V600E Mutation Status of Melanoma Lung Metastases Cannot Be Discriminated on Computed Tomography by LIDC Criteria nor Radiomics Using Machine Learning
Patients with BRAF mutated (BRAF-mt) metastatic melanoma benefit significantly from treatment with BRAF inhibitors. Currently, the BRAF status is determined on archival tumor tissue or on fresh tumor tissue from an invasive biopsy. The aim of this study was to evaluate whether radiomics can predict...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066683/ https://www.ncbi.nlm.nih.gov/pubmed/33915880 http://dx.doi.org/10.3390/jpm11040257 |
_version_ | 1783682626315354112 |
---|---|
author | Angus, Lindsay Starmans, Martijn P. A. Rajicic, Ana Odink, Arlette E. Jalving, Mathilde Niessen, Wiro J. Visser, Jacob J. Sleijfer, Stefan Klein, Stefan van der Veldt, Astrid A. M. |
author_facet | Angus, Lindsay Starmans, Martijn P. A. Rajicic, Ana Odink, Arlette E. Jalving, Mathilde Niessen, Wiro J. Visser, Jacob J. Sleijfer, Stefan Klein, Stefan van der Veldt, Astrid A. M. |
author_sort | Angus, Lindsay |
collection | PubMed |
description | Patients with BRAF mutated (BRAF-mt) metastatic melanoma benefit significantly from treatment with BRAF inhibitors. Currently, the BRAF status is determined on archival tumor tissue or on fresh tumor tissue from an invasive biopsy. The aim of this study was to evaluate whether radiomics can predict the BRAF status in a non-invasive manner. Patients with melanoma lung metastases, known BRAF status, and a pretreatment computed tomography scan were included. After semi-automatic annotation of the lung lesions (maximum two per patient), 540 radiomics features were extracted. A chest radiologist scored all segmented lung lesions according to the Lung Image Database Consortium (LIDC) criteria. Univariate analysis was performed to assess the predictive value of each feature for BRAF mutation status. A combination of various machine learning methods was used to develop BRAF decision models based on the radiomics features and LIDC criteria. A total of 169 lung lesions from 103 patients (51 BRAF-mt; 52 BRAF wild type) were included. There were no features with a significant discriminative value in the univariate analysis. Models based on radiomics features and LIDC criteria both performed as poorly as guessing. Hence, the BRAF mutation status in melanoma lung metastases cannot be predicted using radiomics features or visually scored LIDC criteria. |
format | Online Article Text |
id | pubmed-8066683 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80666832021-04-25 The BRAF P.V600E Mutation Status of Melanoma Lung Metastases Cannot Be Discriminated on Computed Tomography by LIDC Criteria nor Radiomics Using Machine Learning Angus, Lindsay Starmans, Martijn P. A. Rajicic, Ana Odink, Arlette E. Jalving, Mathilde Niessen, Wiro J. Visser, Jacob J. Sleijfer, Stefan Klein, Stefan van der Veldt, Astrid A. M. J Pers Med Article Patients with BRAF mutated (BRAF-mt) metastatic melanoma benefit significantly from treatment with BRAF inhibitors. Currently, the BRAF status is determined on archival tumor tissue or on fresh tumor tissue from an invasive biopsy. The aim of this study was to evaluate whether radiomics can predict the BRAF status in a non-invasive manner. Patients with melanoma lung metastases, known BRAF status, and a pretreatment computed tomography scan were included. After semi-automatic annotation of the lung lesions (maximum two per patient), 540 radiomics features were extracted. A chest radiologist scored all segmented lung lesions according to the Lung Image Database Consortium (LIDC) criteria. Univariate analysis was performed to assess the predictive value of each feature for BRAF mutation status. A combination of various machine learning methods was used to develop BRAF decision models based on the radiomics features and LIDC criteria. A total of 169 lung lesions from 103 patients (51 BRAF-mt; 52 BRAF wild type) were included. There were no features with a significant discriminative value in the univariate analysis. Models based on radiomics features and LIDC criteria both performed as poorly as guessing. Hence, the BRAF mutation status in melanoma lung metastases cannot be predicted using radiomics features or visually scored LIDC criteria. MDPI 2021-04-01 /pmc/articles/PMC8066683/ /pubmed/33915880 http://dx.doi.org/10.3390/jpm11040257 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Angus, Lindsay Starmans, Martijn P. A. Rajicic, Ana Odink, Arlette E. Jalving, Mathilde Niessen, Wiro J. Visser, Jacob J. Sleijfer, Stefan Klein, Stefan van der Veldt, Astrid A. M. The BRAF P.V600E Mutation Status of Melanoma Lung Metastases Cannot Be Discriminated on Computed Tomography by LIDC Criteria nor Radiomics Using Machine Learning |
title | The BRAF P.V600E Mutation Status of Melanoma Lung Metastases Cannot Be Discriminated on Computed Tomography by LIDC Criteria nor Radiomics Using Machine Learning |
title_full | The BRAF P.V600E Mutation Status of Melanoma Lung Metastases Cannot Be Discriminated on Computed Tomography by LIDC Criteria nor Radiomics Using Machine Learning |
title_fullStr | The BRAF P.V600E Mutation Status of Melanoma Lung Metastases Cannot Be Discriminated on Computed Tomography by LIDC Criteria nor Radiomics Using Machine Learning |
title_full_unstemmed | The BRAF P.V600E Mutation Status of Melanoma Lung Metastases Cannot Be Discriminated on Computed Tomography by LIDC Criteria nor Radiomics Using Machine Learning |
title_short | The BRAF P.V600E Mutation Status of Melanoma Lung Metastases Cannot Be Discriminated on Computed Tomography by LIDC Criteria nor Radiomics Using Machine Learning |
title_sort | braf p.v600e mutation status of melanoma lung metastases cannot be discriminated on computed tomography by lidc criteria nor radiomics using machine learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066683/ https://www.ncbi.nlm.nih.gov/pubmed/33915880 http://dx.doi.org/10.3390/jpm11040257 |
work_keys_str_mv | AT anguslindsay thebrafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning AT starmansmartijnpa thebrafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning AT rajicicana thebrafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning AT odinkarlettee thebrafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning AT jalvingmathilde thebrafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning AT niessenwiroj thebrafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning AT visserjacobj thebrafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning AT sleijferstefan thebrafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning AT kleinstefan thebrafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning AT vanderveldtastridam thebrafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning AT anguslindsay brafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning AT starmansmartijnpa brafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning AT rajicicana brafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning AT odinkarlettee brafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning AT jalvingmathilde brafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning AT niessenwiroj brafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning AT visserjacobj brafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning AT sleijferstefan brafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning AT kleinstefan brafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning AT vanderveldtastridam brafpv600emutationstatusofmelanomalungmetastasescannotbediscriminatedoncomputedtomographybylidccriterianorradiomicsusingmachinelearning |