Cargando…
Pharmaceutical Assessment Suggests Locomotion Hyperactivity in Zebrafish Triggered by Arecoline Might Be Associated with Multiple Muscarinic Acetylcholine Receptors Activation
Arecoline is one of the nicotinic acid-based alkaloids, which is found in the betel nut. In addition to its function as a muscarinic agonist, arecoline exhibits several adverse effects, such as inducing growth retardation and causing developmental defects in animal embryos, including zebrafish, chic...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066688/ https://www.ncbi.nlm.nih.gov/pubmed/33916832 http://dx.doi.org/10.3390/toxins13040259 |
_version_ | 1783682627458301952 |
---|---|
author | Siregar, Petrus Audira, Gilbert Feng, Ling-Yi Lee, Jia-Hau Santoso, Fiorency Yu, Wen-Hao Lai, Yu-Heng Li, Jih-Heng Lin, Ying-Ting Chen, Jung-Ren Hsiao, Chung-Der |
author_facet | Siregar, Petrus Audira, Gilbert Feng, Ling-Yi Lee, Jia-Hau Santoso, Fiorency Yu, Wen-Hao Lai, Yu-Heng Li, Jih-Heng Lin, Ying-Ting Chen, Jung-Ren Hsiao, Chung-Der |
author_sort | Siregar, Petrus |
collection | PubMed |
description | Arecoline is one of the nicotinic acid-based alkaloids, which is found in the betel nut. In addition to its function as a muscarinic agonist, arecoline exhibits several adverse effects, such as inducing growth retardation and causing developmental defects in animal embryos, including zebrafish, chicken, and mice. In this study, we aimed to study the potential adverse effects of waterborne arecoline exposure on zebrafish larvae locomotor activity and investigate the possible mechanism of the arecoline effects in zebrafish behavior. The zebrafish behavior analysis, together with molecular docking and the antagonist co-exposure experiment using muscarinic acetylcholine receptor antagonists were conducted. Zebrafish larvae aged 96 h post-fertilization (hpf) were exposed to different concentrations (0.001, 0.01, 0.1, and 1 ppm) of arecoline for 30 min and 24 h, respectively, to find out the effect of arecoline in different time exposures. Locomotor activities were measured and quantified at 120 hpf. The results showed that arecoline caused zebrafish larvae locomotor hyperactivities, even at a very low concentration. For the mechanistic study, we conducted a structure-based molecular docking simulation and antagonist co-exposure experiment to explore the potential interactions between arecoline and eight subtypes, namely, M1a, M2a, M2b, M3a, M3b, M4a, M5a, and M5b, of zebrafish endogenous muscarinic acetylcholine receptors (mAChRs). Arecoline was predicted to show a strong binding affinity to most of the subtypes. We also discovered that the locomotion hyperactivity phenotypes triggered by arecoline could be rescued by co-incubating it with M1 to M4 mAChR antagonists. Taken together, by a pharmacological approach, we demonstrated that arecoline functions as a highly potent hyperactivity-stimulating compound in zebrafish that is mediated by multiple muscarinic acetylcholine receptors. |
format | Online Article Text |
id | pubmed-8066688 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80666882021-04-25 Pharmaceutical Assessment Suggests Locomotion Hyperactivity in Zebrafish Triggered by Arecoline Might Be Associated with Multiple Muscarinic Acetylcholine Receptors Activation Siregar, Petrus Audira, Gilbert Feng, Ling-Yi Lee, Jia-Hau Santoso, Fiorency Yu, Wen-Hao Lai, Yu-Heng Li, Jih-Heng Lin, Ying-Ting Chen, Jung-Ren Hsiao, Chung-Der Toxins (Basel) Article Arecoline is one of the nicotinic acid-based alkaloids, which is found in the betel nut. In addition to its function as a muscarinic agonist, arecoline exhibits several adverse effects, such as inducing growth retardation and causing developmental defects in animal embryos, including zebrafish, chicken, and mice. In this study, we aimed to study the potential adverse effects of waterborne arecoline exposure on zebrafish larvae locomotor activity and investigate the possible mechanism of the arecoline effects in zebrafish behavior. The zebrafish behavior analysis, together with molecular docking and the antagonist co-exposure experiment using muscarinic acetylcholine receptor antagonists were conducted. Zebrafish larvae aged 96 h post-fertilization (hpf) were exposed to different concentrations (0.001, 0.01, 0.1, and 1 ppm) of arecoline for 30 min and 24 h, respectively, to find out the effect of arecoline in different time exposures. Locomotor activities were measured and quantified at 120 hpf. The results showed that arecoline caused zebrafish larvae locomotor hyperactivities, even at a very low concentration. For the mechanistic study, we conducted a structure-based molecular docking simulation and antagonist co-exposure experiment to explore the potential interactions between arecoline and eight subtypes, namely, M1a, M2a, M2b, M3a, M3b, M4a, M5a, and M5b, of zebrafish endogenous muscarinic acetylcholine receptors (mAChRs). Arecoline was predicted to show a strong binding affinity to most of the subtypes. We also discovered that the locomotion hyperactivity phenotypes triggered by arecoline could be rescued by co-incubating it with M1 to M4 mAChR antagonists. Taken together, by a pharmacological approach, we demonstrated that arecoline functions as a highly potent hyperactivity-stimulating compound in zebrafish that is mediated by multiple muscarinic acetylcholine receptors. MDPI 2021-04-03 /pmc/articles/PMC8066688/ /pubmed/33916832 http://dx.doi.org/10.3390/toxins13040259 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Siregar, Petrus Audira, Gilbert Feng, Ling-Yi Lee, Jia-Hau Santoso, Fiorency Yu, Wen-Hao Lai, Yu-Heng Li, Jih-Heng Lin, Ying-Ting Chen, Jung-Ren Hsiao, Chung-Der Pharmaceutical Assessment Suggests Locomotion Hyperactivity in Zebrafish Triggered by Arecoline Might Be Associated with Multiple Muscarinic Acetylcholine Receptors Activation |
title | Pharmaceutical Assessment Suggests Locomotion Hyperactivity in Zebrafish Triggered by Arecoline Might Be Associated with Multiple Muscarinic Acetylcholine Receptors Activation |
title_full | Pharmaceutical Assessment Suggests Locomotion Hyperactivity in Zebrafish Triggered by Arecoline Might Be Associated with Multiple Muscarinic Acetylcholine Receptors Activation |
title_fullStr | Pharmaceutical Assessment Suggests Locomotion Hyperactivity in Zebrafish Triggered by Arecoline Might Be Associated with Multiple Muscarinic Acetylcholine Receptors Activation |
title_full_unstemmed | Pharmaceutical Assessment Suggests Locomotion Hyperactivity in Zebrafish Triggered by Arecoline Might Be Associated with Multiple Muscarinic Acetylcholine Receptors Activation |
title_short | Pharmaceutical Assessment Suggests Locomotion Hyperactivity in Zebrafish Triggered by Arecoline Might Be Associated with Multiple Muscarinic Acetylcholine Receptors Activation |
title_sort | pharmaceutical assessment suggests locomotion hyperactivity in zebrafish triggered by arecoline might be associated with multiple muscarinic acetylcholine receptors activation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066688/ https://www.ncbi.nlm.nih.gov/pubmed/33916832 http://dx.doi.org/10.3390/toxins13040259 |
work_keys_str_mv | AT siregarpetrus pharmaceuticalassessmentsuggestslocomotionhyperactivityinzebrafishtriggeredbyarecolinemightbeassociatedwithmultiplemuscarinicacetylcholinereceptorsactivation AT audiragilbert pharmaceuticalassessmentsuggestslocomotionhyperactivityinzebrafishtriggeredbyarecolinemightbeassociatedwithmultiplemuscarinicacetylcholinereceptorsactivation AT fenglingyi pharmaceuticalassessmentsuggestslocomotionhyperactivityinzebrafishtriggeredbyarecolinemightbeassociatedwithmultiplemuscarinicacetylcholinereceptorsactivation AT leejiahau pharmaceuticalassessmentsuggestslocomotionhyperactivityinzebrafishtriggeredbyarecolinemightbeassociatedwithmultiplemuscarinicacetylcholinereceptorsactivation AT santosofiorency pharmaceuticalassessmentsuggestslocomotionhyperactivityinzebrafishtriggeredbyarecolinemightbeassociatedwithmultiplemuscarinicacetylcholinereceptorsactivation AT yuwenhao pharmaceuticalassessmentsuggestslocomotionhyperactivityinzebrafishtriggeredbyarecolinemightbeassociatedwithmultiplemuscarinicacetylcholinereceptorsactivation AT laiyuheng pharmaceuticalassessmentsuggestslocomotionhyperactivityinzebrafishtriggeredbyarecolinemightbeassociatedwithmultiplemuscarinicacetylcholinereceptorsactivation AT lijihheng pharmaceuticalassessmentsuggestslocomotionhyperactivityinzebrafishtriggeredbyarecolinemightbeassociatedwithmultiplemuscarinicacetylcholinereceptorsactivation AT linyingting pharmaceuticalassessmentsuggestslocomotionhyperactivityinzebrafishtriggeredbyarecolinemightbeassociatedwithmultiplemuscarinicacetylcholinereceptorsactivation AT chenjungren pharmaceuticalassessmentsuggestslocomotionhyperactivityinzebrafishtriggeredbyarecolinemightbeassociatedwithmultiplemuscarinicacetylcholinereceptorsactivation AT hsiaochungder pharmaceuticalassessmentsuggestslocomotionhyperactivityinzebrafishtriggeredbyarecolinemightbeassociatedwithmultiplemuscarinicacetylcholinereceptorsactivation |