Cargando…
Ensemble of Multiple Classifiers for Multilabel Classification of Plant Protein Subcellular Localization
The accurate prediction of protein localization is a critical step in any functional genome annotation process. This paper proposes an improved strategy for protein subcellular localization prediction in plants based on multiple classifiers, to improve prediction results in terms of both accuracy an...
Autores principales: | Wattanapornprom, Warin, Thammarongtham, Chinae, Hongsthong, Apiradee, Lertampaiporn, Supatcha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066735/ https://www.ncbi.nlm.nih.gov/pubmed/33808227 http://dx.doi.org/10.3390/life11040293 |
Ejemplares similares
-
Ensemble-AHTPpred: A Robust Ensemble Machine Learning Model Integrated With a New Composite Feature for Identifying Antihypertensive Peptides
por: Lertampaiporn, Supatcha, et al.
Publicado: (2022) -
Ensemble-AMPPred: Robust AMP Prediction and Recognition Using the Ensemble Learning Method with a New Hybrid Feature for Differentiating AMPs
por: Lertampaiporn, Supatcha, et al.
Publicado: (2021) -
PSO-LocBact: A Consensus Method for Optimizing Multiple Classifier Results for Predicting the Subcellular Localization of Bacterial Proteins
por: Lertampaiporn, Supatcha, et al.
Publicado: (2019) -
Heterogeneous ensemble approach with discriminative features and
modified-SMOTEbagging for pre-miRNA classification
por: Lertampaiporn, Supatcha, et al.
Publicado: (2013) -
Identification of non-coding RNAs with a new composite feature in the Hybrid Random Forest Ensemble algorithm
por: Lertampaiporn, Supatcha, et al.
Publicado: (2014)