Cargando…

Commensal Escherichia coli Antimicrobial Resistance and Multidrug-Resistance Dynamics during Broiler Growing Period: Commercial vs. Improved Farm Conditions

SIMPLE SUMMARY: This experiment was designed to evaluate the differences in antimicrobial and multidrug resistance dynamics in broilers reared under two different farm conditions (commercial vs. improved) during the growing period, using Escherichia coli as sentinel bacterium. Although no antibiotic...

Descripción completa

Detalles Bibliográficos
Autores principales: Montoro-Dasi, Laura, Villagra, Arantxa, Sevilla-Navarro, Sandra, Pérez-Gracia, Maria Teresa, Vega, Santiago, Marin, Clara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066766/
https://www.ncbi.nlm.nih.gov/pubmed/33916657
http://dx.doi.org/10.3390/ani11041005
Descripción
Sumario:SIMPLE SUMMARY: This experiment was designed to evaluate the differences in antimicrobial and multidrug resistance dynamics in broilers reared under two different farm conditions (commercial vs. improved) during the growing period, using Escherichia coli as sentinel bacterium. Although no antibiotics were applied during rearing for two different management conditions tested, high rates of antimicrobial and multidrug-resistant bacteria were observed throughout rearing, with the percentages of resistant bacteria observed being of particular concern in day-old chicks on arrival day and in chickens at the end of the growing period, just before delivery to the slaughterhouse. ABSTRACT: New measures applied to reduce antimicrobial resistances (AMR) at field level in broiler production are focused on improving animals’ welfare and resilience. However, it is necessary to have better knowledge of AMR epidemiology. Thus, the aim of this study was to evaluate AMR and multidrug resistance (MDR) dynamics during the rearing of broilers under commercial (33 kg/m(2) density and max. 20 ppm ammonia) and improved (17 kg/m(2) density and max. 10 ppm ammonia) farm conditions. Day-old chicks were housed in two poultry houses (commercial vs. improved), and no antimicrobial agents were administered at any point. Animals were sampled at arrival day, mid-period and at slaughter day. High AMR rates were observed throughout rearing. No statistical differences were observed between groups. Moreover, both groups presented high MDR at slaughter day. These results could be explained by vertical or horizontal resistance acquisition. In conclusion, AMR and MDR are present throughout rearing. Moreover, although a lower level of MDR was observed at mid-period in animals reared under less intensive conditions, no differences were found at the end. In order to reduce the presence of AMR bacteria in poultry, further studies are needed to better understand AMR acquisition and prevalence in differing broiler growing conditions.