Cargando…
The PKA-p38MAPK-NFAT5-Organic Osmolytes Pathway in Duchenne Muscular Dystrophy: From Essential Player in Osmotic Homeostasis, Inflammation and Skeletal Muscle Regeneration to Therapeutic Target
In Duchenne muscular dystrophy (DMD), the absence of dystrophin from the dystrophin-associated protein complex (DAPC) causes muscle membrane instability, which leads to myofiber necrosis, hampered regeneration, and chronic inflammation. The resulting disabled DAPC-associated cellular pathways have b...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066813/ https://www.ncbi.nlm.nih.gov/pubmed/33808305 http://dx.doi.org/10.3390/biomedicines9040350 |
_version_ | 1783682655531827200 |
---|---|
author | Herbelet, Sandrine Merckx, Caroline De Paepe, Boel |
author_facet | Herbelet, Sandrine Merckx, Caroline De Paepe, Boel |
author_sort | Herbelet, Sandrine |
collection | PubMed |
description | In Duchenne muscular dystrophy (DMD), the absence of dystrophin from the dystrophin-associated protein complex (DAPC) causes muscle membrane instability, which leads to myofiber necrosis, hampered regeneration, and chronic inflammation. The resulting disabled DAPC-associated cellular pathways have been described both at the molecular and the therapeutical level, with the Toll-like receptor nuclear factor kappa-light-chain-enhancer of activated B cells pathway (NF-ƘB), Janus kinase/signal transducer and activator of transcription proteins, and the transforming growth factor-β pathways receiving the most attention. In this review, we specifically focus on the protein kinase A/ mitogen-activated protein kinase/nuclear factor of activated T-cells 5/organic osmolytes (PKA-p38MAPK-NFAT5-organic osmolytes) pathway. This pathway plays an important role in osmotic homeostasis essential to normal cell physiology via its regulation of the influx/efflux of organic osmolytes. Besides, NFAT5 plays an essential role in cell survival under hyperosmolar conditions, in skeletal muscle regeneration, and in tissue inflammation, closely interacting with the master regulator of inflammation NF-ƘB. We describe the involvement of the PKA-p38MAPK-NFAT5-organic osmolytes pathway in DMD pathophysiology and provide a clear overview of which therapeutic molecules could be of potential benefit to DMD patients. We conclude that modulation of the PKA-p38MAPK-NFAT5-organic osmolytes pathway could be developed as supportive treatment for DMD in conjunction with genetic therapy. |
format | Online Article Text |
id | pubmed-8066813 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80668132021-04-25 The PKA-p38MAPK-NFAT5-Organic Osmolytes Pathway in Duchenne Muscular Dystrophy: From Essential Player in Osmotic Homeostasis, Inflammation and Skeletal Muscle Regeneration to Therapeutic Target Herbelet, Sandrine Merckx, Caroline De Paepe, Boel Biomedicines Review In Duchenne muscular dystrophy (DMD), the absence of dystrophin from the dystrophin-associated protein complex (DAPC) causes muscle membrane instability, which leads to myofiber necrosis, hampered regeneration, and chronic inflammation. The resulting disabled DAPC-associated cellular pathways have been described both at the molecular and the therapeutical level, with the Toll-like receptor nuclear factor kappa-light-chain-enhancer of activated B cells pathway (NF-ƘB), Janus kinase/signal transducer and activator of transcription proteins, and the transforming growth factor-β pathways receiving the most attention. In this review, we specifically focus on the protein kinase A/ mitogen-activated protein kinase/nuclear factor of activated T-cells 5/organic osmolytes (PKA-p38MAPK-NFAT5-organic osmolytes) pathway. This pathway plays an important role in osmotic homeostasis essential to normal cell physiology via its regulation of the influx/efflux of organic osmolytes. Besides, NFAT5 plays an essential role in cell survival under hyperosmolar conditions, in skeletal muscle regeneration, and in tissue inflammation, closely interacting with the master regulator of inflammation NF-ƘB. We describe the involvement of the PKA-p38MAPK-NFAT5-organic osmolytes pathway in DMD pathophysiology and provide a clear overview of which therapeutic molecules could be of potential benefit to DMD patients. We conclude that modulation of the PKA-p38MAPK-NFAT5-organic osmolytes pathway could be developed as supportive treatment for DMD in conjunction with genetic therapy. MDPI 2021-03-30 /pmc/articles/PMC8066813/ /pubmed/33808305 http://dx.doi.org/10.3390/biomedicines9040350 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Review Herbelet, Sandrine Merckx, Caroline De Paepe, Boel The PKA-p38MAPK-NFAT5-Organic Osmolytes Pathway in Duchenne Muscular Dystrophy: From Essential Player in Osmotic Homeostasis, Inflammation and Skeletal Muscle Regeneration to Therapeutic Target |
title | The PKA-p38MAPK-NFAT5-Organic Osmolytes Pathway in Duchenne Muscular Dystrophy: From Essential Player in Osmotic Homeostasis, Inflammation and Skeletal Muscle Regeneration to Therapeutic Target |
title_full | The PKA-p38MAPK-NFAT5-Organic Osmolytes Pathway in Duchenne Muscular Dystrophy: From Essential Player in Osmotic Homeostasis, Inflammation and Skeletal Muscle Regeneration to Therapeutic Target |
title_fullStr | The PKA-p38MAPK-NFAT5-Organic Osmolytes Pathway in Duchenne Muscular Dystrophy: From Essential Player in Osmotic Homeostasis, Inflammation and Skeletal Muscle Regeneration to Therapeutic Target |
title_full_unstemmed | The PKA-p38MAPK-NFAT5-Organic Osmolytes Pathway in Duchenne Muscular Dystrophy: From Essential Player in Osmotic Homeostasis, Inflammation and Skeletal Muscle Regeneration to Therapeutic Target |
title_short | The PKA-p38MAPK-NFAT5-Organic Osmolytes Pathway in Duchenne Muscular Dystrophy: From Essential Player in Osmotic Homeostasis, Inflammation and Skeletal Muscle Regeneration to Therapeutic Target |
title_sort | pka-p38mapk-nfat5-organic osmolytes pathway in duchenne muscular dystrophy: from essential player in osmotic homeostasis, inflammation and skeletal muscle regeneration to therapeutic target |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066813/ https://www.ncbi.nlm.nih.gov/pubmed/33808305 http://dx.doi.org/10.3390/biomedicines9040350 |
work_keys_str_mv | AT herbeletsandrine thepkap38mapknfat5organicosmolytespathwayinduchennemusculardystrophyfromessentialplayerinosmotichomeostasisinflammationandskeletalmuscleregenerationtotherapeutictarget AT merckxcaroline thepkap38mapknfat5organicosmolytespathwayinduchennemusculardystrophyfromessentialplayerinosmotichomeostasisinflammationandskeletalmuscleregenerationtotherapeutictarget AT depaepeboel thepkap38mapknfat5organicosmolytespathwayinduchennemusculardystrophyfromessentialplayerinosmotichomeostasisinflammationandskeletalmuscleregenerationtotherapeutictarget AT herbeletsandrine pkap38mapknfat5organicosmolytespathwayinduchennemusculardystrophyfromessentialplayerinosmotichomeostasisinflammationandskeletalmuscleregenerationtotherapeutictarget AT merckxcaroline pkap38mapknfat5organicosmolytespathwayinduchennemusculardystrophyfromessentialplayerinosmotichomeostasisinflammationandskeletalmuscleregenerationtotherapeutictarget AT depaepeboel pkap38mapknfat5organicosmolytespathwayinduchennemusculardystrophyfromessentialplayerinosmotichomeostasisinflammationandskeletalmuscleregenerationtotherapeutictarget |