Cargando…
A high level of lncFGD5-AS1 inhibits epithelial-to-Mesenchymal transition by regulating the miR-196a-5p/SMAD6/BMP axis in gastric Cancer
BACKGROUND: Long non-coding RNA (lncRNA) was a vital factor in the progression and initiation of human cancers. This study found a new lncRNA, FGD5-AS1, which can inhibit EMT process, proliferation, and metastasis in vitro and in vivo. METHODS: qRT-PCR was employed to test the expression of lncFGD5-...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066889/ https://www.ncbi.nlm.nih.gov/pubmed/33892661 http://dx.doi.org/10.1186/s12885-021-08192-x |
Sumario: | BACKGROUND: Long non-coding RNA (lncRNA) was a vital factor in the progression and initiation of human cancers. This study found a new lncRNA, FGD5-AS1, which can inhibit EMT process, proliferation, and metastasis in vitro and in vivo. METHODS: qRT-PCR was employed to test the expression of lncFGD5-AS1 in 30 gastric cancer patients’ cancer tissue and para-cancer tissue. Overexpressed lncFGD5-AS1 cells shown sharply decrease of proliferation, migration, and epithelial-mesenchymal transition (EMT). miR-196a-5p/SMAD6 was confirmed as downstream molecular mechanism of lncFGD5-AS1 by expression correlation analysis and mechanism experiments. In vivo study illustrated overexpression of lncFGD5-AS1 suppression tumor growth. RESULTS: LncFGD5-AS1 served as a ceRNA of miR-196a-5p to release its inhibition on SMAD6, a conventional inhibitor on the BMP pathway. Comparing with normal gastric cancer cells, FGD5-AS1 overexpressed group had fewer migration cells, lower cell viability, and lower EMT transformation rate. Meanwhile, xenografts nude mice injecting with overexpressed-FGD5-AS1 cells also shown smaller tumor weight and volume. CONCLUSION: In conclusion, this research supported the first evidence that FGD5-AS1 suppressed proliferation and metastasis in gastric cancer by regulating miR-196a-5p/SMAD6/BMP axis and suggested a potential therapeutic candidate for gastric cancer. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12885-021-08192-x. |
---|