Cargando…

Early-Life Metabolic and Hormonal Markers in Blood and Growth until Age 2 Years: Results from a Randomized Controlled Trial in Healthy Infants Fed a Modified Low-Protein Infant Formula

Background: High protein intake in early life is associated with an increased risk of childhood obesity. Dietary protein intake may be a key mechanistic modulator through alterations in endocrine and metabolic responses. Objective: We aimed to determine the impact of different protein intake of infa...

Descripción completa

Detalles Bibliográficos
Autores principales: Kouwenhoven, Stefanie M. P., Fleddermann, Manja, Finken, Martijn J. J., Twisk, Jos W. R., van der Beek, Eline M., Abrahamse-Berkeveld, Marieke, van de Heijning, Bert J. M., van Harskamp, Dewi, van Goudoever, Johannes B., Koletzko, Berthold V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067012/
https://www.ncbi.nlm.nih.gov/pubmed/33915788
http://dx.doi.org/10.3390/nu13041159
Descripción
Sumario:Background: High protein intake in early life is associated with an increased risk of childhood obesity. Dietary protein intake may be a key mechanistic modulator through alterations in endocrine and metabolic responses. Objective: We aimed to determine the impact of different protein intake of infants on blood metabolic and hormonal markers at the age of four months. We further aimed to investigate the association between these markers and anthropometric parameters and body composition until the age of two years. Design: Term infants received a modified low-protein formula (mLP) (1.7 g protein/100 kcal) or a specifically designed control formula (CTRL) (2.1 g protein/100 kcal) until 6 months of age in a double blinded RCT. The outcomes were compared with a breast-fed (BF) group. Glucose, insulin, leptin, IGF-1, IGF-BP1, -BP2, and -BP3 levels were measured at the age of 4 months. Anthropometric parameters and body composition were assessed until the age of 2 years. Groups were compared using linear regression analysis. Results: No significant differences were observed in any of the blood parameters between the formula groups (n = 53 mLP; n = 44 CTRL) despite a significant difference in protein intake. Insulin and HOMA-IR were higher in both formula groups compared to the BF group (n = 36) (p < 0.001). IGF-BP1 was lower in both formula groups compared to the BF group (p < 0.01). We found a lower IGF-BP2 level in the CTRL group compared to the BF group (p < 0.01) and a higher IGF-BP3 level in the mLP group compared to the BF group (p = 0.03). There were no significant differences in glucose, leptin, and IGF-1 between the three feeding groups. We found specific associations of all early-life metabolic and hormonal blood parameters with long-term growth and body composition except for IGF-1. Conclusions: Reducing protein intake by 20% did not result in a different metabolic profile in formula-fed infants at 4 months of age. Formula-fed infants had a lower insulin sensitivity compared to breast-fed infants. We found associations between all metabolic and hormonal markers (except for IGF-1) determined at age 4 months and growth and body composition up to two years of age.