Cargando…

MIL-101(Cr), an Efficient Heterogeneous Catalyst for One Pot Synthesis of 2,4,5-tri Substituted Imidazoles under Solvent Free Conditions

A chromium-containing metal-organic framework (MOF), MIL-101 (Chromium(III) benzene-1,4-dicarboxylate), was used to catalyze the one pot, three component synthesis of some 2,4,5-trisubstituted imidazoles under solvent-free conditions. The advantages of using this heterogeneous catalyst include short...

Descripción completa

Detalles Bibliográficos
Autores principales: Manteghi, Faranak, Zakeri, Fatemeh, Guy, Owen James, Tehrani, Zari
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067193/
https://www.ncbi.nlm.nih.gov/pubmed/33810278
http://dx.doi.org/10.3390/nano11040845
Descripción
Sumario:A chromium-containing metal-organic framework (MOF), MIL-101 (Chromium(III) benzene-1,4-dicarboxylate), was used to catalyze the one pot, three component synthesis of some 2,4,5-trisubstituted imidazoles under solvent-free conditions. The advantages of using this heterogeneous catalyst include short reaction time, high yields, easy and quick isolation of catalyst and products, low amount of catalyst needed, and that the addition of solvent, salt, and additives are not needed. This catalyst is highly efficient and can be recovered at least 5 times with a slight loss of efficiency. The structure of the metal-organic frameworks (MOF) was confirmed by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (HNMR) were performed to confirm some of the synthesized products. Experimental data indicated that the optimum amount of catalyst was 5 mg for benzil (1 mmol), 4-chlorobenzaldehyde (1 mmol), and ammonium acetate (2.5 mmol), and the synthetic route to the various imidazoles is performed in 10 min by 95% yield, an acceptable result rivalling those of other catalysts.