Cargando…
Phenomapping of Patients with Primary Breast Cancer Using Machine Learning-Based Unsupervised Cluster Analysis
Primary breast cancer (PBC) is a heterogeneous disease at the clinical, histopathological, and molecular levels. The improved classification of PBC might be important to identify subgroups of the disease, relevant to patient management. Machine learning algorithms may allow a better understanding of...
Autores principales: | Ferro, Sara, Bottigliengo, Daniele, Gregori, Dario, Fabricio, Aline S. C., Gion, Massimo, Baldi, Ileana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067194/ https://www.ncbi.nlm.nih.gov/pubmed/33916398 http://dx.doi.org/10.3390/jpm11040272 |
Ejemplares similares
-
County-level phenomapping to identify disparities in cardiovascular outcomes: An unsupervised clustering analysis: Short title: Unsupervised clustering of counties and risk of cardiovascular mortality
por: Segar, Matthew W., et al.
Publicado: (2020) -
The Role of Genetic Factors in Characterizing Extra-Intestinal Manifestations in Crohn’s Disease Patients: Are Bayesian Machine Learning Methods Improving Outcome Predictions?
por: Bottigliengo, Daniele, et al.
Publicado: (2019) -
An explainable machine learning-based phenomapping strategy for adaptive predictive enrichment in randomized clinical trials
por: Oikonomou, Evangelos K., et al.
Publicado: (2023) -
An explainable machine learning-based phenomapping strategy for adaptive predictive enrichment in randomized controlled trials
por: Oikonomou, Evangelos K, et al.
Publicado: (2023) -
Assessment of Glucose Lowering Medications’ Effectiveness for Cardiovascular Clinical Risk Management of Real-World Patients with Type 2 Diabetes: Targeted Maximum Likelihood Estimation under Model Misspecification and Missing Outcomes
por: Sciannameo, Veronica, et al.
Publicado: (2022)