Cargando…

An Interesting Molecule: γ-Aminobutyric Acid. What Can We Learn from Hydra Polyps?

Neuronal excitability is controlled primarily by γ-aminobutyric acid (GABA) in the central and peripheral nervous systems of vertebrate as well as invertebrate organisms. Besides its recognized neurotransmitter functions, GABA also plays a fundamental role in neurogenesis and synaptogenesis during e...

Descripción completa

Detalles Bibliográficos
Autor principal: Pierobon, Paola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067216/
https://www.ncbi.nlm.nih.gov/pubmed/33805330
http://dx.doi.org/10.3390/brainsci11040437
Descripción
Sumario:Neuronal excitability is controlled primarily by γ-aminobutyric acid (GABA) in the central and peripheral nervous systems of vertebrate as well as invertebrate organisms. Besides its recognized neurotransmitter functions, GABA also plays a fundamental role in neurogenesis and synaptogenesis during embryonic development. In addition, GABAergic mechanisms are also involved in disorders of various peripheral tissues, ranging from diabetes to hypothyroidism to inflammatory responses. The discovery of the molecule and the history of its biosynthetic pathways in vertebrate and invertebrate phyla are summarized here. The occurrence and distribution of GABA, GABA-synthesizing enzymes, and receptors to GABA in the freshwater polyp Hydra vulgaris (Cnidaria: Hydrozoa), endowed with an early evolved nervous system, are discussed in relation to possible interactions with the microbiota, a stable component of Hydra polyps; their contribution to the evolution of nervous systems through microbe–neuronal interactions is proposed.