Cargando…

Distinct Classes of Flavonoids and Epigallocatechin Gallate, Polyphenol Affects an Oncogenic Mutant p53 Protein, Cell Growth and Invasion in a TNBC Breast Cancer Cell Line

Mutant p53(s) are widely considered as oncogenes and promote several gain-of-function oncogenic activities. p53 mutations correlate with higher rates of metastasis and poor survival; therefore, it is paramount to inhibit mutant p53 protein either directly or indirectly. Although some compounds have...

Descripción completa

Detalles Bibliográficos
Autores principales: Kollareddy, Madhu, Martinez, Luis A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067228/
https://www.ncbi.nlm.nih.gov/pubmed/33918387
http://dx.doi.org/10.3390/cells10040797
_version_ 1783682754047639552
author Kollareddy, Madhu
Martinez, Luis A.
author_facet Kollareddy, Madhu
Martinez, Luis A.
author_sort Kollareddy, Madhu
collection PubMed
description Mutant p53(s) are widely considered as oncogenes and promote several gain-of-function oncogenic activities. p53 mutations correlate with higher rates of metastasis and poor survival; therefore, it is paramount to inhibit mutant p53 protein either directly or indirectly. Although some compounds have been developed, none of them have achieved a desirable level of specificity. Some of these compounds only targeted specific mutations. In search of less-toxic compounds, we tested plant-derived compounds on mutant p53 triple-negative breast cancer cell lines. Here, we show that the compounds tested reduced the protein levels of one of the more frequent oncogenic p53 mutants (R249S; hot spot mutation), and its important targets that promote invasion and metastasis, including GMPS and IMPDH1. All compounds tested perturbed the invasion potential of the breast cancer cell line. These compounds downregulated several nucleotide metabolism genes (NMGs) which are essential for cell cycle progression. We observed S-phase arrest correlating to reduced cell proliferation and increased replication stress. Moreover, we also show a reduction of key ETS transcription family members including ETS2, ETS1, ETV1, and ETV4, which are involved in invasion and metastasis. We propose that these compounds may inhibit invasion by interfering with multiple pathways. Our findings exemplify that these tested compounds could inhibit invasion and cell growth in TNBC in a nucleotide-dependent manner.
format Online
Article
Text
id pubmed-8067228
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-80672282021-04-25 Distinct Classes of Flavonoids and Epigallocatechin Gallate, Polyphenol Affects an Oncogenic Mutant p53 Protein, Cell Growth and Invasion in a TNBC Breast Cancer Cell Line Kollareddy, Madhu Martinez, Luis A. Cells Article Mutant p53(s) are widely considered as oncogenes and promote several gain-of-function oncogenic activities. p53 mutations correlate with higher rates of metastasis and poor survival; therefore, it is paramount to inhibit mutant p53 protein either directly or indirectly. Although some compounds have been developed, none of them have achieved a desirable level of specificity. Some of these compounds only targeted specific mutations. In search of less-toxic compounds, we tested plant-derived compounds on mutant p53 triple-negative breast cancer cell lines. Here, we show that the compounds tested reduced the protein levels of one of the more frequent oncogenic p53 mutants (R249S; hot spot mutation), and its important targets that promote invasion and metastasis, including GMPS and IMPDH1. All compounds tested perturbed the invasion potential of the breast cancer cell line. These compounds downregulated several nucleotide metabolism genes (NMGs) which are essential for cell cycle progression. We observed S-phase arrest correlating to reduced cell proliferation and increased replication stress. Moreover, we also show a reduction of key ETS transcription family members including ETS2, ETS1, ETV1, and ETV4, which are involved in invasion and metastasis. We propose that these compounds may inhibit invasion by interfering with multiple pathways. Our findings exemplify that these tested compounds could inhibit invasion and cell growth in TNBC in a nucleotide-dependent manner. MDPI 2021-04-02 /pmc/articles/PMC8067228/ /pubmed/33918387 http://dx.doi.org/10.3390/cells10040797 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kollareddy, Madhu
Martinez, Luis A.
Distinct Classes of Flavonoids and Epigallocatechin Gallate, Polyphenol Affects an Oncogenic Mutant p53 Protein, Cell Growth and Invasion in a TNBC Breast Cancer Cell Line
title Distinct Classes of Flavonoids and Epigallocatechin Gallate, Polyphenol Affects an Oncogenic Mutant p53 Protein, Cell Growth and Invasion in a TNBC Breast Cancer Cell Line
title_full Distinct Classes of Flavonoids and Epigallocatechin Gallate, Polyphenol Affects an Oncogenic Mutant p53 Protein, Cell Growth and Invasion in a TNBC Breast Cancer Cell Line
title_fullStr Distinct Classes of Flavonoids and Epigallocatechin Gallate, Polyphenol Affects an Oncogenic Mutant p53 Protein, Cell Growth and Invasion in a TNBC Breast Cancer Cell Line
title_full_unstemmed Distinct Classes of Flavonoids and Epigallocatechin Gallate, Polyphenol Affects an Oncogenic Mutant p53 Protein, Cell Growth and Invasion in a TNBC Breast Cancer Cell Line
title_short Distinct Classes of Flavonoids and Epigallocatechin Gallate, Polyphenol Affects an Oncogenic Mutant p53 Protein, Cell Growth and Invasion in a TNBC Breast Cancer Cell Line
title_sort distinct classes of flavonoids and epigallocatechin gallate, polyphenol affects an oncogenic mutant p53 protein, cell growth and invasion in a tnbc breast cancer cell line
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067228/
https://www.ncbi.nlm.nih.gov/pubmed/33918387
http://dx.doi.org/10.3390/cells10040797
work_keys_str_mv AT kollareddymadhu distinctclassesofflavonoidsandepigallocatechingallatepolyphenolaffectsanoncogenicmutantp53proteincellgrowthandinvasioninatnbcbreastcancercellline
AT martinezluisa distinctclassesofflavonoidsandepigallocatechingallatepolyphenolaffectsanoncogenicmutantp53proteincellgrowthandinvasioninatnbcbreastcancercellline