Cargando…
Multi-Scale Aggregation Graph Neural Networks Based on Feature Similarity for Semi-Supervised Learning
The problem of extracting meaningful data through graph analysis spans a range of different fields, such as social networks, knowledge graphs, citation networks, the World Wide Web, and so on. As increasingly structured data become available, the importance of being able to effectively mine and lear...
Autores principales: | Zhang, Xun, Yang, Lanyan, Zhang, Bin, Liu, Ying, Jiang, Dong, Qin, Xiaohai, Hao, Mengmeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067278/ https://www.ncbi.nlm.nih.gov/pubmed/33800642 http://dx.doi.org/10.3390/e23040403 |
Ejemplares similares
-
Graph-Based Self-Training for Semi-Supervised Deep Similarity Learning
por: Wang, Yifan, et al.
Publicado: (2023) -
Inductive inference of gene regulatory network using supervised and semi-supervised graph neural networks
por: Wang, Juexin, et al.
Publicado: (2020) -
Semi-Supervised Multi-View Clustering with Weighted Anchor Graph Embedding
por: Wang, Senhong, et al.
Publicado: (2021) -
Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network
por: Chen, Jiarui, et al.
Publicado: (2021) -
Inferring Disease-Associated MicroRNAs Using Semi-supervised Multi-Label Graph Convolutional Networks
por: Pan, Xiaoyong, et al.
Publicado: (2019)