Cargando…
Transwell Insert-Embedded Microfluidic Devices for Time-Lapse Monitoring of Alveolar Epithelium Barrier Function under Various Stimulations
This paper reports a transwell insert-embedded microfluidic device capable of culturing cells at an air-liquid interface (ALI), mimicking the in vivo alveolar epithelium microenvironment. Integration of a commercially available transwell insert makes the device fabrication straightforward and elimin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067445/ https://www.ncbi.nlm.nih.gov/pubmed/33917518 http://dx.doi.org/10.3390/mi12040406 |
Sumario: | This paper reports a transwell insert-embedded microfluidic device capable of culturing cells at an air-liquid interface (ALI), mimicking the in vivo alveolar epithelium microenvironment. Integration of a commercially available transwell insert makes the device fabrication straightforward and eliminates the tedious device assembly processes. The transwell insert can later be detached from the device for high-resolution imaging of the cells. In the experiments, the cells showing type-I pneumocyte markers are exploited to construct an in vitro alveolar epithelium model, and four culture conditions including conventional liquid/liquid culture (LLC) and air–liquid interface (ALI) cell culture in normal growth medium, and ALI cell culture with inflammatory cytokine (TNF-α) stimulation and ethanol vapor exposure are applied to investigate their effects on the alveolar epithelium barrier function. The barrier permeability is time-lapse monitored using trans-epithelial electrical resistance (TEER) measurement and immunofluorescence staining of the tight junction protein (ZO-1). The results demonstrate the functionalities of the device, and further show the applications and advantages of the constructed in vitro cell models for the lung studies. |
---|