Cargando…

UVA-Degradable Collagenase Nanocapsules as a Potential Treatment for Fibrotic Diseases

Peyronie and Dupuytren are pathologies characterized by the appearance of localized fibrotic lesions in an organ. These disorders originate from an excessive production of collagen in the tissue provoking dysfunction and functional limitations to the patients. Local administration of collagenase is...

Descripción completa

Detalles Bibliográficos
Autores principales: Moreno, Víctor M., Meroño, Carolina, Baeza, Alejandro, Usategui, Alicia, Ortiz-Romero, Pablo L., Pablos, José L., Vallet-Regí, María
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067494/
https://www.ncbi.nlm.nih.gov/pubmed/33917543
http://dx.doi.org/10.3390/pharmaceutics13040499
Descripción
Sumario:Peyronie and Dupuytren are pathologies characterized by the appearance of localized fibrotic lesions in an organ. These disorders originate from an excessive production of collagen in the tissue provoking dysfunction and functional limitations to the patients. Local administration of collagenase is the most used treatment for these fibrotic-type diseases, but a high lability of the enzyme limits its therapeutic efficacy. Herein, we present a novel methodology for the preparation of collagenase nanocapsules without affecting its enzymatic activity and capable of releasing the enzyme in response to an ultraviolet A (UVA) light stimulus. Polymeric coating around collagenase was formed by free-radical polymerization of acrylamide-type monomers. Their degradation capacity under UVA irradiation was provided by incorporating a novel photocleavable acrylamide-type crosslinker within the polymeric framework. This property allowed collagenase release to be triggered in a controlled manner by employing an easily focused stimulus. Additionally, UVA irradiation presents considerable benefits by itself due to its capacity to induce collagenase production in situ. An expected synergistic effect of collagenase nanocapsules in conjunction with UVA effect may present a promising treatment for these fibrotic diseases.