Cargando…

Space Flight-Associated Neuroocular Syndrome, Idiopathic Intracranial Hypertension, and Pseudotumor Cerebri: Phenotypic Descriptions, Pathogenesis, and Hydrodynamics

Recent data from astronauts who have returned to Earth from a long-duration space flight have unequivocally distinguished spaceflight-associated neuro-ocular syndrome (SANS) from idiopathic intracranial hypertension (IIH) and pseudotumor cerebri (PTC). We review the semiology and pathogenesis of the...

Descripción completa

Detalles Bibliográficos
Autor principal: Kesserwani, Hassan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067672/
https://www.ncbi.nlm.nih.gov/pubmed/33907644
http://dx.doi.org/10.7759/cureus.14103
_version_ 1783682857526362112
author Kesserwani, Hassan
author_facet Kesserwani, Hassan
author_sort Kesserwani, Hassan
collection PubMed
description Recent data from astronauts who have returned to Earth from a long-duration space flight have unequivocally distinguished spaceflight-associated neuro-ocular syndrome (SANS) from idiopathic intracranial hypertension (IIH) and pseudotumor cerebri (PTC). We review the semiology and pathogenesis of these three entities, noting that optic disc edema is what unites them, and this where the similarities between SANS and IIH/PTC end. We distinguish between PTC and IIH and between SANS and IIH/PTC and review the medical and surgical therapy of IIH/PTC. The key to understanding the phenomenon of optic disc edema is the geometry of the optic nerve sheath, which is a simulacrum of an inverted Venturi tube. This allows us to theoretically study the hydrodynamics of the optic nerve sheath by applying simple physical laws, including the Venturi effect, Poiseuille’s law, and Reynold’s number, and we speculate on nature’s design and the correlation of form and function in understanding how cerebrospinal fluid (CSF) circulates in the optic nerve sheath as it approaches the optic nerve head. Recent spectacular data on the histology of the blood nerve-barrier of the optic nerve disc and the glymphatic system of the optic nerve sheath will also help us understand the development of optic disc edema due to the microgravity-induced cephalad shift of CSF in SANS. We will explore the role of the sodium/potassium adenosine triphosphatase (ATPase) pump on choroid plexus epithelial cells and the aquaporin-4 water receptors located on astrocyte end-feet and their complex interactions with the tetracyclines, mineralocorticoids, and therapeutic agents with carbonic anhydrase activity. We also adumbrate the complex interactions between obesity, vitamin A, and 11-beta-hydroxysteroid dehydrogenase and how the aquaporin-4 receptor relates to these interactions.
format Online
Article
Text
id pubmed-8067672
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Cureus
record_format MEDLINE/PubMed
spelling pubmed-80676722021-04-26 Space Flight-Associated Neuroocular Syndrome, Idiopathic Intracranial Hypertension, and Pseudotumor Cerebri: Phenotypic Descriptions, Pathogenesis, and Hydrodynamics Kesserwani, Hassan Cureus Neurology Recent data from astronauts who have returned to Earth from a long-duration space flight have unequivocally distinguished spaceflight-associated neuro-ocular syndrome (SANS) from idiopathic intracranial hypertension (IIH) and pseudotumor cerebri (PTC). We review the semiology and pathogenesis of these three entities, noting that optic disc edema is what unites them, and this where the similarities between SANS and IIH/PTC end. We distinguish between PTC and IIH and between SANS and IIH/PTC and review the medical and surgical therapy of IIH/PTC. The key to understanding the phenomenon of optic disc edema is the geometry of the optic nerve sheath, which is a simulacrum of an inverted Venturi tube. This allows us to theoretically study the hydrodynamics of the optic nerve sheath by applying simple physical laws, including the Venturi effect, Poiseuille’s law, and Reynold’s number, and we speculate on nature’s design and the correlation of form and function in understanding how cerebrospinal fluid (CSF) circulates in the optic nerve sheath as it approaches the optic nerve head. Recent spectacular data on the histology of the blood nerve-barrier of the optic nerve disc and the glymphatic system of the optic nerve sheath will also help us understand the development of optic disc edema due to the microgravity-induced cephalad shift of CSF in SANS. We will explore the role of the sodium/potassium adenosine triphosphatase (ATPase) pump on choroid plexus epithelial cells and the aquaporin-4 water receptors located on astrocyte end-feet and their complex interactions with the tetracyclines, mineralocorticoids, and therapeutic agents with carbonic anhydrase activity. We also adumbrate the complex interactions between obesity, vitamin A, and 11-beta-hydroxysteroid dehydrogenase and how the aquaporin-4 receptor relates to these interactions. Cureus 2021-03-25 /pmc/articles/PMC8067672/ /pubmed/33907644 http://dx.doi.org/10.7759/cureus.14103 Text en Copyright © 2021, Kesserwani et al. https://creativecommons.org/licenses/by/3.0/This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Neurology
Kesserwani, Hassan
Space Flight-Associated Neuroocular Syndrome, Idiopathic Intracranial Hypertension, and Pseudotumor Cerebri: Phenotypic Descriptions, Pathogenesis, and Hydrodynamics
title Space Flight-Associated Neuroocular Syndrome, Idiopathic Intracranial Hypertension, and Pseudotumor Cerebri: Phenotypic Descriptions, Pathogenesis, and Hydrodynamics
title_full Space Flight-Associated Neuroocular Syndrome, Idiopathic Intracranial Hypertension, and Pseudotumor Cerebri: Phenotypic Descriptions, Pathogenesis, and Hydrodynamics
title_fullStr Space Flight-Associated Neuroocular Syndrome, Idiopathic Intracranial Hypertension, and Pseudotumor Cerebri: Phenotypic Descriptions, Pathogenesis, and Hydrodynamics
title_full_unstemmed Space Flight-Associated Neuroocular Syndrome, Idiopathic Intracranial Hypertension, and Pseudotumor Cerebri: Phenotypic Descriptions, Pathogenesis, and Hydrodynamics
title_short Space Flight-Associated Neuroocular Syndrome, Idiopathic Intracranial Hypertension, and Pseudotumor Cerebri: Phenotypic Descriptions, Pathogenesis, and Hydrodynamics
title_sort space flight-associated neuroocular syndrome, idiopathic intracranial hypertension, and pseudotumor cerebri: phenotypic descriptions, pathogenesis, and hydrodynamics
topic Neurology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067672/
https://www.ncbi.nlm.nih.gov/pubmed/33907644
http://dx.doi.org/10.7759/cureus.14103
work_keys_str_mv AT kesserwanihassan spaceflightassociatedneuroocularsyndromeidiopathicintracranialhypertensionandpseudotumorcerebriphenotypicdescriptionspathogenesisandhydrodynamics