Cargando…
Coverage Path Planning Using Reinforcement Learning-Based TSP for hTetran—A Polyabolo-Inspired Self-Reconfigurable Tiling Robot
One of the critical challenges in deploying the cleaning robots is the completion of covering the entire area. Current tiling robots for area coverage have fixed forms and are limited to cleaning only certain areas. The reconfigurable system is the creative answer to such an optimal coverage problem...
Autores principales: | Le, Anh Vu, Veerajagadheswar, Prabakaran, Thiha Kyaw, Phone, Elara, Mohan Rajesh, Nhan, Nguyen Huu Khanh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067765/ https://www.ncbi.nlm.nih.gov/pubmed/33916995 http://dx.doi.org/10.3390/s21082577 |
Ejemplares similares
-
Modified A-Star Algorithm for Efficient Coverage Path Planning in Tetris Inspired Self-Reconfigurable Robot with Integrated Laser Sensor
por: Le, Anh Vu, et al.
Publicado: (2018) -
Optimization Complete Area Coverage by Reconfigurable hTrihex Tiling Robot
por: Le, Anh Vu, et al.
Publicado: (2020) -
Evolutionary Algorithm-Based Complete Coverage Path Planning for Tetriamond Tiling Robots
por: Le, Anh Vu, et al.
Publicado: (2020) -
Inspiration From Games and Entertainment Artifacts: A Rising Paradigm for Designing Mechanisms and Algorithms in Robotics
por: Tan, Ning, et al.
Publicado: (2019) -
Deep-Learning-Based Context-Aware Multi-Level Information Fusion Systems for Indoor Mobile Robots Safe Navigation
por: Jia, Yin, et al.
Publicado: (2023)