Cargando…
A Strategy for Dimensionality Reduction and Data Analysis Applied to Microstructure–Property Relationships of Nanoporous Metals
Nanoporous metals, with their complex microstructure, represent an ideal candidate for the development of methods that combine physics, data, and machine learning. The preparation of nanporous metals via dealloying allows for tuning of the microstructure and macroscopic mechanical properties within...
Autor principal: | Huber, Norbert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067848/ https://www.ncbi.nlm.nih.gov/pubmed/33917132 http://dx.doi.org/10.3390/ma14081822 |
Ejemplares similares
-
A Review of Experimentally Informed Micromechanical Modeling of Nanoporous Metals: From Structural Descriptors to Predictive Structure–Property Relationships
por: Richert, Claudia, et al.
Publicado: (2020) -
Prototyping Crop Traits Retrieval Models for CHIME: Dimensionality Reduction Strategies Applied to PRISMA Data
por: Pascual-Venteo, Ana B., et al.
Publicado: (2022) -
Synthesis of Hierarchical Nanoporous Microstructures via the Kirkendall Effect in Chemical Reduction Process
por: Gao, Ling, et al.
Publicado: (2015) -
Harnessing inherently hierarchical microstructures of plant biomass to construct three-dimensional nanoporous nitrogen-doped carbons as efficient and durable oxygen reduction electrocatalysts
por: Tang, Hongqu, et al.
Publicado: (2019) -
Quality, Microstructure, and Properties of Metal Alloys
por: Lipiński, Tomasz
Publicado: (2023)