Cargando…

Hippo signaling: bridging the gap between cancer and neurodegenerative disorders

During development, regulation of organ size requires a balance between cell proliferation, growth and cell death. Dysregulation of these fundamental processes can cause a variety of diseases. Excessive cell proliferation results in cancer whereas excessive cell death results in neurodegenerative di...

Descripción completa

Detalles Bibliográficos
Autores principales: Gogia, Neha, Chimata, Anuradha Venkatakrishnan, Deshpande, Prajakta, Singh, Aditi, Singh, Amit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067938/
https://www.ncbi.nlm.nih.gov/pubmed/33063715
http://dx.doi.org/10.4103/1673-5374.295273
Descripción
Sumario:During development, regulation of organ size requires a balance between cell proliferation, growth and cell death. Dysregulation of these fundamental processes can cause a variety of diseases. Excessive cell proliferation results in cancer whereas excessive cell death results in neurodegenerative disorders. Many signaling pathways known-to-date have a role in growth regulation. Among them, evolutionarily conserved Hippo signaling pathway is unique as it controls both cell proliferation and cell death by a variety of mechanisms during organ sculpture and development. Neurodegeneration, a complex process of progressive death of neuronal population, results in fatal disorders with no available cure to date. During normal development, cell death is required for sculpting of an organ. However, aberrant cell death in neuronal cell population can result in neurodegenerative disorders. Hippo pathway has gathered major attention for its role in growth regulation and cancer, however, other functions like its role in neurodegeneration are also emerging rapidly. This review highlights the role of Hippo signaling in cell death and neurodegenerative diseases and provide the information on the chemical inhibitors employed to block Hippo pathway. Understanding Hippo mediated cell death mechanisms will aid in development of reliable and effective therapeutic strategies in future.