Cargando…
Room-Temperature Catalyst Enables Selective Acetone Sensing
Catalytic packed bed filters ahead of gas sensors can drastically improve their selectivity, a key challenge in medical, food and environmental applications. Yet, such filters require high operation temperatures (usually some hundreds °C) impeding their integration into low-power (e.g., battery-driv...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067997/ https://www.ncbi.nlm.nih.gov/pubmed/33917648 http://dx.doi.org/10.3390/ma14081839 |
_version_ | 1783682933061582848 |
---|---|
author | Weber, Ines C. Wang, Chang-ting Güntner, Andreas T. |
author_facet | Weber, Ines C. Wang, Chang-ting Güntner, Andreas T. |
author_sort | Weber, Ines C. |
collection | PubMed |
description | Catalytic packed bed filters ahead of gas sensors can drastically improve their selectivity, a key challenge in medical, food and environmental applications. Yet, such filters require high operation temperatures (usually some hundreds °C) impeding their integration into low-power (e.g., battery-driven) devices. Here, we reveal room-temperature catalytic filters that facilitate highly selective acetone sensing, a breath marker for body fat burn monitoring. Varying the Pt content between 0–10 mol% during flame spray pyrolysis resulted in Al(2)O(3) nanoparticles decorated with Pt/PtO(x) clusters with predominantly 5–6 nm size, as revealed by X-ray diffraction and electron microscopy. Most importantly, Pt contents above 3 mol% removed up to 100 ppm methanol, isoprene and ethanol completely already at 40 °C and high relative humidity, while acetone was mostly preserved, as confirmed by mass spectrometry. When combined with an inexpensive, chemo-resistive sensor of flame-made Si/WO(3), acetone was detected with high selectivity (≥225) over these interferants next to H(2), CO, form-/acetaldehyde and 2-propanol. Such catalytic filters do not require additional heating anymore, and thus are attractive for integration into mobile health care devices to monitor, for instance, lifestyle changes in gyms, hospitals or at home. |
format | Online Article Text |
id | pubmed-8067997 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80679972021-04-25 Room-Temperature Catalyst Enables Selective Acetone Sensing Weber, Ines C. Wang, Chang-ting Güntner, Andreas T. Materials (Basel) Article Catalytic packed bed filters ahead of gas sensors can drastically improve their selectivity, a key challenge in medical, food and environmental applications. Yet, such filters require high operation temperatures (usually some hundreds °C) impeding their integration into low-power (e.g., battery-driven) devices. Here, we reveal room-temperature catalytic filters that facilitate highly selective acetone sensing, a breath marker for body fat burn monitoring. Varying the Pt content between 0–10 mol% during flame spray pyrolysis resulted in Al(2)O(3) nanoparticles decorated with Pt/PtO(x) clusters with predominantly 5–6 nm size, as revealed by X-ray diffraction and electron microscopy. Most importantly, Pt contents above 3 mol% removed up to 100 ppm methanol, isoprene and ethanol completely already at 40 °C and high relative humidity, while acetone was mostly preserved, as confirmed by mass spectrometry. When combined with an inexpensive, chemo-resistive sensor of flame-made Si/WO(3), acetone was detected with high selectivity (≥225) over these interferants next to H(2), CO, form-/acetaldehyde and 2-propanol. Such catalytic filters do not require additional heating anymore, and thus are attractive for integration into mobile health care devices to monitor, for instance, lifestyle changes in gyms, hospitals or at home. MDPI 2021-04-08 /pmc/articles/PMC8067997/ /pubmed/33917648 http://dx.doi.org/10.3390/ma14081839 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Weber, Ines C. Wang, Chang-ting Güntner, Andreas T. Room-Temperature Catalyst Enables Selective Acetone Sensing |
title | Room-Temperature Catalyst Enables Selective Acetone Sensing |
title_full | Room-Temperature Catalyst Enables Selective Acetone Sensing |
title_fullStr | Room-Temperature Catalyst Enables Selective Acetone Sensing |
title_full_unstemmed | Room-Temperature Catalyst Enables Selective Acetone Sensing |
title_short | Room-Temperature Catalyst Enables Selective Acetone Sensing |
title_sort | room-temperature catalyst enables selective acetone sensing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067997/ https://www.ncbi.nlm.nih.gov/pubmed/33917648 http://dx.doi.org/10.3390/ma14081839 |
work_keys_str_mv | AT weberinesc roomtemperaturecatalystenablesselectiveacetonesensing AT wangchangting roomtemperaturecatalystenablesselectiveacetonesensing AT guntnerandreast roomtemperaturecatalystenablesselectiveacetonesensing |