Cargando…
Recombinant Toxoplasma gondii Ribosomal Protein P2 Modulates the Functions of Murine Macrophages In Vitro and Provides Immunity against Acute Toxoplasmosis In Vivo
Almost every warm-blooded animal can be an intermediate host for Toxoplasma gondii (T. gondii); there is still no efficient vaccine and medicine available for T. gondii infections. Detected on the surface of free tachyzoites of T. gondii, T. gondii ribosomal protein P2 (TgRPP2) has been identified a...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8068005/ https://www.ncbi.nlm.nih.gov/pubmed/33917244 http://dx.doi.org/10.3390/vaccines9040357 |
Sumario: | Almost every warm-blooded animal can be an intermediate host for Toxoplasma gondii (T. gondii); there is still no efficient vaccine and medicine available for T. gondii infections. Detected on the surface of free tachyzoites of T. gondii, T. gondii ribosomal protein P2 (TgRPP2) has been identified as a target for protection against toxoplasmosis. In the present study, TgRPP2 was firstly expressed in a prokaryotic expression system, and the purified recombinant TgRPP2 (rTgRPP2) was characterized by its modulation effects on murine macrophages. Then, the purified rTgRPP2 was injected into mice to evaluate the immune protection of rTgRPP2. The results indicated that rTgRPP2 could bind to murine Ana-1 cells and showed good reactogenicity. After incubation with purified rTgRPP2, the proliferation, apoptosis, phagocytosis, nitric oxide (NO) production, and cytokines secreted by murine macrophages were modulated. Furthermore, the in vivo experiments indicated that animals immunized with rTgRPP2 could generate a significantly high level of antibodies, cytokines, and major histocompatibility complex (MHC) molecules, leading to a prolonged survival time. All of the results indicated that murine macrophages could be regulated by rTgRPP2 and are essential for the maintenance of tissue homeostasis. Immunization with rTgRPP2 triggered significant protection, with prolonged survival time in a mice model of acute toxoplasmosis. Our results lend credibility to the idea that rTgRPP2 could be a potential target for drug design and vaccine development. |
---|