Cargando…

Quantitative Control of Early Flowering in White Lupin (Lupinus albus L.)

White lupin (Lupinus albus L.) is a pulse annual plant cultivated from the tropics to temperate regions for its high-protein grain as well as a cover crop or green manure. Wild populations are typically late flowering and have high vernalization requirements. Nevertheless, some early flowering and t...

Descripción completa

Detalles Bibliográficos
Autores principales: Rychel-Bielska, Sandra, Surma, Anna, Bielski, Wojciech, Kozak, Bartosz, Galek, Renata, Książkiewicz, Michał
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8068107/
https://www.ncbi.nlm.nih.gov/pubmed/33917799
http://dx.doi.org/10.3390/ijms22083856
Descripción
Sumario:White lupin (Lupinus albus L.) is a pulse annual plant cultivated from the tropics to temperate regions for its high-protein grain as well as a cover crop or green manure. Wild populations are typically late flowering and have high vernalization requirements. Nevertheless, some early flowering and thermoneutral accessions were found in the Mediterranean basin. Recently, quantitative trait loci (QTLs) explaining flowering time variance were identified in bi-parental population mapping, however, phenotypic and genotypic diversity in the world collection has not been addressed yet. In this study, a diverse set of white lupin accessions (n = 160) was phenotyped for time to flowering in a controlled environment and genotyped with PCR-based markers (n = 50) tagging major QTLs and selected homologs of photoperiod and vernalization pathway genes. This survey highlighted quantitative control of flowering time in white lupin, providing statistically significant associations for all major QTLs and numerous regulatory genes, including white lupin homologs of CONSTANS, FLOWERING LOCUS T, FY, MOTHER OF FT AND TFL1, PHYTOCHROME INTERACTING FACTOR 4, SKI-INTERACTING PROTEIN 1, and VERNALIZATION INDEPENDENCE 3. This revealed the complexity of flowering control in white lupin, dispersed among numerous loci localized on several chromosomes, provided economic justification for future genome-wide association studies or genomic selection rather than relying on simple marker-assisted selection.