Cargando…
Improved Mask R-CNN for Aircraft Detection in Remote Sensing Images
In recent years, remote sensing images has become one of the most popular directions in image processing. A small feature gap exists between satellite and natural images. Therefore, deep learning algorithms could be applied to recognize remote sensing images. We propose an improved Mask R-CNN model,...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8068277/ https://www.ncbi.nlm.nih.gov/pubmed/33917904 http://dx.doi.org/10.3390/s21082618 |
Sumario: | In recent years, remote sensing images has become one of the most popular directions in image processing. A small feature gap exists between satellite and natural images. Therefore, deep learning algorithms could be applied to recognize remote sensing images. We propose an improved Mask R-CNN model, called SCMask R-CNN, to enhance the detection effect in the high-resolution remote sensing images which contain the dense targets and complex background. Our model can perform object recognition and segmentation in parallel. This model uses a modified SC-conv based on the ResNet101 backbone network to obtain more discriminative feature information and adds a set of dilated convolutions with a specific size to improve the instance segmentation effect. We construct WFA-1400 based on the DOTA dataset because of the shortage of remote sensing mask datasets. We compare the improved algorithm with other state-of-the-art algorithms. The object detection AP(50) and AP increased by 1–2% and 1%, respectively, objectively proving the effectiveness and the feasibility of the improved model. |
---|