Cargando…
An Improved Boundary-Aware U-Net for Ore Image Semantic Segmentation
Particle size is the most important index to reflect the crushing quality of ores, and the accuracy of particle size statistics directly affects the subsequent operation of mines. Accurate ore image segmentation is an important prerequisite to ensure the reliability of particle size statistics. Howe...
Autores principales: | Wang, Wei, Li, Qing, Xiao, Chengyong, Zhang, Dezheng, Miao, Lei, Wang, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8068300/ https://www.ncbi.nlm.nih.gov/pubmed/33917873 http://dx.doi.org/10.3390/s21082615 |
Ejemplares similares
-
Boundary Aware Semantic Segmentation using Pyramid-dilated Dense U-Net for Lung Segmentation in Computed Tomography Images
por: Agnes, S. Akila
Publicado: (2023) -
Ore image segmentation method using U-Net and Res_Unet convolutional networks
por: Liu, Xiaobo, et al.
Publicado: (2020) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
An Ore Image Segmentation Method Based on RDU-Net Model
por: Xiao, Dong, et al.
Publicado: (2020) -
Structure boundary-preserving U-Net for prostate ultrasound image segmentation
por: Bi, Hui, et al.
Publicado: (2022)