Cargando…
An Enhanced Histopathology Analysis: An AI-Based System for Multiclass Grading of Oral Squamous Cell Carcinoma and Segmenting of Epithelial and Stromal Tissue
SIMPLE SUMMARY: An established dataset of histopathology images obtained by biopsy and reviewed by two pathologists is used to create a two-stage oral squamous cell carcinoma diagnostic AI-based system. In the first stage, automated multiclass grading of OSCC is performed to improve the objectivity...
Autores principales: | Musulin, Jelena, Štifanić, Daniel, Zulijani, Ana, Ćabov, Tomislav, Dekanić, Andrea, Car, Zlatan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8068326/ https://www.ncbi.nlm.nih.gov/pubmed/33917952 http://dx.doi.org/10.3390/cancers13081784 |
Ejemplares similares
-
Metallothioneins and Megalin Expression Profiling in Premalignant and Malignant Oral Squamous Epithelial Lesions
por: Zulijani, Ana, et al.
Publicado: (2021) -
Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review
por: Musulin, Jelena, et al.
Publicado: (2021) -
Semantic Segmentation of Urinary Bladder Cancer Masses from CT Images: A Transfer Learning Approach
por: Baressi Šegota, Sandi, et al.
Publicado: (2021) -
ODONTOMAS: PEDIATRIC CASE REPORT AND REVIEW OF THE LITERATURE
por: Ćabov, Tomislav, et al.
Publicado: (2021) -
On Urinary Bladder Cancer Diagnosis: Utilization of Deep Convolutional Generative Adversarial Networks for Data Augmentation
por: Lorencin, Ivan, et al.
Publicado: (2021)