Cargando…

Time-Efficient Convolutional Neural Network-Assisted Brillouin Optical Frequency Domain Analysis

To our knowledge, this is the first report on a machine-learning-assisted Brillouin optical frequency domain analysis (BOFDA) for time-efficient temperature measurements. We propose a convolutional neural network (CNN)-based signal post-processing method that, compared to the conventional Lorentzian...

Descripción completa

Detalles Bibliográficos
Autores principales: Karapanagiotis, Christos, Wosniok, Aleksander, Hicke, Konstantin, Krebber, Katerina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8068849/
https://www.ncbi.nlm.nih.gov/pubmed/33924337
http://dx.doi.org/10.3390/s21082724
_version_ 1783683099118272512
author Karapanagiotis, Christos
Wosniok, Aleksander
Hicke, Konstantin
Krebber, Katerina
author_facet Karapanagiotis, Christos
Wosniok, Aleksander
Hicke, Konstantin
Krebber, Katerina
author_sort Karapanagiotis, Christos
collection PubMed
description To our knowledge, this is the first report on a machine-learning-assisted Brillouin optical frequency domain analysis (BOFDA) for time-efficient temperature measurements. We propose a convolutional neural network (CNN)-based signal post-processing method that, compared to the conventional Lorentzian curve fitting approach, facilitates temperature extraction. Due to its robustness against noise, it can enhance the performance of the system. The CNN-assisted BOFDA is expected to shorten the measurement time by more than nine times and open the way for applications, where faster monitoring is essential.
format Online
Article
Text
id pubmed-8068849
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-80688492021-04-26 Time-Efficient Convolutional Neural Network-Assisted Brillouin Optical Frequency Domain Analysis Karapanagiotis, Christos Wosniok, Aleksander Hicke, Konstantin Krebber, Katerina Sensors (Basel) Communication To our knowledge, this is the first report on a machine-learning-assisted Brillouin optical frequency domain analysis (BOFDA) for time-efficient temperature measurements. We propose a convolutional neural network (CNN)-based signal post-processing method that, compared to the conventional Lorentzian curve fitting approach, facilitates temperature extraction. Due to its robustness against noise, it can enhance the performance of the system. The CNN-assisted BOFDA is expected to shorten the measurement time by more than nine times and open the way for applications, where faster monitoring is essential. MDPI 2021-04-13 /pmc/articles/PMC8068849/ /pubmed/33924337 http://dx.doi.org/10.3390/s21082724 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Communication
Karapanagiotis, Christos
Wosniok, Aleksander
Hicke, Konstantin
Krebber, Katerina
Time-Efficient Convolutional Neural Network-Assisted Brillouin Optical Frequency Domain Analysis
title Time-Efficient Convolutional Neural Network-Assisted Brillouin Optical Frequency Domain Analysis
title_full Time-Efficient Convolutional Neural Network-Assisted Brillouin Optical Frequency Domain Analysis
title_fullStr Time-Efficient Convolutional Neural Network-Assisted Brillouin Optical Frequency Domain Analysis
title_full_unstemmed Time-Efficient Convolutional Neural Network-Assisted Brillouin Optical Frequency Domain Analysis
title_short Time-Efficient Convolutional Neural Network-Assisted Brillouin Optical Frequency Domain Analysis
title_sort time-efficient convolutional neural network-assisted brillouin optical frequency domain analysis
topic Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8068849/
https://www.ncbi.nlm.nih.gov/pubmed/33924337
http://dx.doi.org/10.3390/s21082724
work_keys_str_mv AT karapanagiotischristos timeefficientconvolutionalneuralnetworkassistedbrillouinopticalfrequencydomainanalysis
AT wosniokaleksander timeefficientconvolutionalneuralnetworkassistedbrillouinopticalfrequencydomainanalysis
AT hickekonstantin timeefficientconvolutionalneuralnetworkassistedbrillouinopticalfrequencydomainanalysis
AT krebberkaterina timeefficientconvolutionalneuralnetworkassistedbrillouinopticalfrequencydomainanalysis