Cargando…
Time-Efficient Convolutional Neural Network-Assisted Brillouin Optical Frequency Domain Analysis
To our knowledge, this is the first report on a machine-learning-assisted Brillouin optical frequency domain analysis (BOFDA) for time-efficient temperature measurements. We propose a convolutional neural network (CNN)-based signal post-processing method that, compared to the conventional Lorentzian...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8068849/ https://www.ncbi.nlm.nih.gov/pubmed/33924337 http://dx.doi.org/10.3390/s21082724 |
_version_ | 1783683099118272512 |
---|---|
author | Karapanagiotis, Christos Wosniok, Aleksander Hicke, Konstantin Krebber, Katerina |
author_facet | Karapanagiotis, Christos Wosniok, Aleksander Hicke, Konstantin Krebber, Katerina |
author_sort | Karapanagiotis, Christos |
collection | PubMed |
description | To our knowledge, this is the first report on a machine-learning-assisted Brillouin optical frequency domain analysis (BOFDA) for time-efficient temperature measurements. We propose a convolutional neural network (CNN)-based signal post-processing method that, compared to the conventional Lorentzian curve fitting approach, facilitates temperature extraction. Due to its robustness against noise, it can enhance the performance of the system. The CNN-assisted BOFDA is expected to shorten the measurement time by more than nine times and open the way for applications, where faster monitoring is essential. |
format | Online Article Text |
id | pubmed-8068849 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80688492021-04-26 Time-Efficient Convolutional Neural Network-Assisted Brillouin Optical Frequency Domain Analysis Karapanagiotis, Christos Wosniok, Aleksander Hicke, Konstantin Krebber, Katerina Sensors (Basel) Communication To our knowledge, this is the first report on a machine-learning-assisted Brillouin optical frequency domain analysis (BOFDA) for time-efficient temperature measurements. We propose a convolutional neural network (CNN)-based signal post-processing method that, compared to the conventional Lorentzian curve fitting approach, facilitates temperature extraction. Due to its robustness against noise, it can enhance the performance of the system. The CNN-assisted BOFDA is expected to shorten the measurement time by more than nine times and open the way for applications, where faster monitoring is essential. MDPI 2021-04-13 /pmc/articles/PMC8068849/ /pubmed/33924337 http://dx.doi.org/10.3390/s21082724 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Karapanagiotis, Christos Wosniok, Aleksander Hicke, Konstantin Krebber, Katerina Time-Efficient Convolutional Neural Network-Assisted Brillouin Optical Frequency Domain Analysis |
title | Time-Efficient Convolutional Neural Network-Assisted Brillouin Optical Frequency Domain Analysis |
title_full | Time-Efficient Convolutional Neural Network-Assisted Brillouin Optical Frequency Domain Analysis |
title_fullStr | Time-Efficient Convolutional Neural Network-Assisted Brillouin Optical Frequency Domain Analysis |
title_full_unstemmed | Time-Efficient Convolutional Neural Network-Assisted Brillouin Optical Frequency Domain Analysis |
title_short | Time-Efficient Convolutional Neural Network-Assisted Brillouin Optical Frequency Domain Analysis |
title_sort | time-efficient convolutional neural network-assisted brillouin optical frequency domain analysis |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8068849/ https://www.ncbi.nlm.nih.gov/pubmed/33924337 http://dx.doi.org/10.3390/s21082724 |
work_keys_str_mv | AT karapanagiotischristos timeefficientconvolutionalneuralnetworkassistedbrillouinopticalfrequencydomainanalysis AT wosniokaleksander timeefficientconvolutionalneuralnetworkassistedbrillouinopticalfrequencydomainanalysis AT hickekonstantin timeefficientconvolutionalneuralnetworkassistedbrillouinopticalfrequencydomainanalysis AT krebberkaterina timeefficientconvolutionalneuralnetworkassistedbrillouinopticalfrequencydomainanalysis |