Cargando…

Involvement of a Quorum Sensing Signal Molecule in the Extracellular Amylase Activity of the Thermophilic Anoxybacillus amylolyticus

Anoxybacillus amylolyticus is a moderate thermophilic microorganism producing an exopolysaccharide and an extracellular α-amylase able to hydrolyze starch. The synthesis of several biomolecules is often regulated by a quorum sensing (QS) mechanism, a chemical cell-to-cell communication based on the...

Descripción completa

Detalles Bibliográficos
Autores principales: Tramice, Annabella, Cutignano, Adele, Iodice, Annalaura, Poli, Annarita, Finore, Ilaria, Tommonaro, Giuseppina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8068869/
https://www.ncbi.nlm.nih.gov/pubmed/33924442
http://dx.doi.org/10.3390/microorganisms9040819
Descripción
Sumario:Anoxybacillus amylolyticus is a moderate thermophilic microorganism producing an exopolysaccharide and an extracellular α-amylase able to hydrolyze starch. The synthesis of several biomolecules is often regulated by a quorum sensing (QS) mechanism, a chemical cell-to-cell communication based on the production and diffusion of small molecules named “autoinducers”, most of which belonging to the N-acyl homoserine lactones’ (AHLs) family. There are few reports about this mechanism in extremophiles, in particular thermophiles. Here, we report the identification of a signal molecule, the N-butanoyl-homoserine lactone (C4-HSL), from the milieu of A. amylolyticus. Moreover, investigations performed by supplementing a known QS inhibitor, trans-cinnamaldehyde, or exogenous C4-HSL in the growth medium of A. amylolyticus suggested the involvement of QS signaling in the modulation of extracellular α-amylase activity. The data showed that the presence of the QS inhibitor trans-cinnamaldehyde in the medium decreased amylolytic activity, which, conversely, was increased by the effect of exogenous C4-HSL. Overall, these results represent the first evidence of the production of AHLs in thermophilic microorganisms, which could be responsible for a communication system regulating thermostable α-amylase activity.