Cargando…

Change of 0.34Cr-1Ni-Mo-Fe Steel Dislocation Structure in Plasma Electrolyte Hardening

This work deals with the study of changes in the dislocation structure and quantitative characteristics, as well as morphological components, of 0.34Cr-1Ni-Mo-Fe steel before and after plasma electrolytic hardening. According to the electron microscopic studies of the fine structure of 0.34Cr-1Ni-Mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Rakhadilov, Bauyrzhan, Satbayeva, Zarina, Ramankulov, Sherzod, Shektibayev, Nurdaulet, Zhurerova, Laila, Popova, Natalya, Uazyrkhanova, Gulzhaz, Sagdoldina, Zhuldyz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8068900/
https://www.ncbi.nlm.nih.gov/pubmed/33921454
http://dx.doi.org/10.3390/ma14081928
Descripción
Sumario:This work deals with the study of changes in the dislocation structure and quantitative characteristics, as well as morphological components, of 0.34Cr-1Ni-Mo-Fe steel before and after plasma electrolytic hardening. According to the electron microscopic studies of the fine structure of 0.34Cr-1Ni-Mo-Fe steel before and after plasma electrolytic hardening, 0.34Cr-1Ni-Mo-Fe steel is a multiphase material containing an α-phase, a γ-phase (retained austenite), and a cementite and carbide phase. It was revealed that, morphologically, the α-phase in the initial state, generally, is present in the form of: lamellar pearlite with a volume fraction of 35%, a ferritocarbide mixture with a volume fraction of 45%, and fragmented ferrite with a volume fraction of 20% of the material. After surface hardening, the morphological components of the structure changed: packet–lamellar martensite with volume fractions of 60% and 40%, 5% and 7% of γ-phase as residual austenite in the crystals of packet–lamellar martensite, 0.6% and 1.5% of cementite in crystals of packet–lamellar martensite, and 0.15% and 0.35% of complex carbide M(23)C(6) in crystals of packet–lamellar martensite, respectively, were observed. The quantitative characteristics of the dislocation structure were estimated by the following calculated indices of packet and lamellar martensite: scalar (ρ) and excess (ρ±) density of dislocations, the value of the curvature-torsion of the crystal lattice (χ), the amplitude of long-range internal stresses (σd), and the amplitude of shear stresses (σ(L)), according to which the plastic nature of the bending-torsion of the crystal lattice was confirmed (σ(L) > σd).