Cargando…
Impact of Image Context on Deep Learning for Classification of Teeth on Radiographs
Objectives: We aimed to assess the impact of image context information on the accuracy of deep learning models for tooth classification on panoramic dental radiographs. Methods: Our dataset contained 5008 panoramic radiographs with a mean number of 25.2 teeth per image. Teeth were segmented bounding...
Autores principales: | Krois, Joachim, Schneider, Lisa, Schwendicke, Falk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8068972/ https://www.ncbi.nlm.nih.gov/pubmed/33921440 http://dx.doi.org/10.3390/jcm10081635 |
Ejemplares similares
-
Classification of Dental Radiographs Using Deep Learning
por: Cejudo, Jose E., et al.
Publicado: (2021) -
Impact of Noisy Labels on Dental Deep Learning—Calculus Detection on Bitewing Radiographs
por: Büttner, Martha, et al.
Publicado: (2023) -
Segmentation of Dental Restorations on Panoramic Radiographs Using Deep Learning
por: Rohrer, Csaba, et al.
Publicado: (2022) -
Deep Learning for the Radiographic Detection of Periodontal Bone Loss
por: Krois, Joachim, et al.
Publicado: (2019) -
Super-Resolution of Dental Panoramic Radiographs Using Deep Learning: A Pilot Study
por: Mohammad-Rahimi, Hossein, et al.
Publicado: (2023)