Cargando…
Hair-Follicle-Associated Pluripotent (HAP) Stem Cells Can Extensively Differentiate to Tyrosine-Hydroxylase-Expressing Dopamine-Secreting Neurons
Hair-follicle-associated pluripotent (HAP) stem cells are located in the bulge area of hair follicles from mice and humans and have been shown to differentiate to neurons, glia, keratinocytes, smooth muscle cells, melanocytes and beating cardiac muscle cells in vitro. Subsequently, we demonstrated t...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069047/ https://www.ncbi.nlm.nih.gov/pubmed/33920157 http://dx.doi.org/10.3390/cells10040864 |
_version_ | 1783683145705455616 |
---|---|
author | Yamane, Michiko Takaoka, Nanako Obara, Koya Shirai, Kyoumi Aki, Ryoichi Hamada, Yuko Arakawa, Nobuko Hoffman, Robert M. Amoh, Yasuyuki |
author_facet | Yamane, Michiko Takaoka, Nanako Obara, Koya Shirai, Kyoumi Aki, Ryoichi Hamada, Yuko Arakawa, Nobuko Hoffman, Robert M. Amoh, Yasuyuki |
author_sort | Yamane, Michiko |
collection | PubMed |
description | Hair-follicle-associated pluripotent (HAP) stem cells are located in the bulge area of hair follicles from mice and humans and have been shown to differentiate to neurons, glia, keratinocytes, smooth muscle cells, melanocytes and beating cardiac muscle cells in vitro. Subsequently, we demonstrated that HAP stem cells could effect nerve and spinal-cord regeneration in mouse models, differentiating to Schwann cells and neurons in this process. HAP stem cells can be banked by cryopreservation and preserve their ability to differentiate. In the present study, we demonstrated that mouse HAP stem cells cultured in neural-induction medium can extensively differentiate to dopaminergic neurons, which express tyrosine hydroxylase and secrete dopamine. These results indicate that the dopaminergic neurons differentiated from HAP stem cells may be useful in the future to improve the symptoms of Parkinson’s disease in the clinic. |
format | Online Article Text |
id | pubmed-8069047 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80690472021-04-26 Hair-Follicle-Associated Pluripotent (HAP) Stem Cells Can Extensively Differentiate to Tyrosine-Hydroxylase-Expressing Dopamine-Secreting Neurons Yamane, Michiko Takaoka, Nanako Obara, Koya Shirai, Kyoumi Aki, Ryoichi Hamada, Yuko Arakawa, Nobuko Hoffman, Robert M. Amoh, Yasuyuki Cells Article Hair-follicle-associated pluripotent (HAP) stem cells are located in the bulge area of hair follicles from mice and humans and have been shown to differentiate to neurons, glia, keratinocytes, smooth muscle cells, melanocytes and beating cardiac muscle cells in vitro. Subsequently, we demonstrated that HAP stem cells could effect nerve and spinal-cord regeneration in mouse models, differentiating to Schwann cells and neurons in this process. HAP stem cells can be banked by cryopreservation and preserve their ability to differentiate. In the present study, we demonstrated that mouse HAP stem cells cultured in neural-induction medium can extensively differentiate to dopaminergic neurons, which express tyrosine hydroxylase and secrete dopamine. These results indicate that the dopaminergic neurons differentiated from HAP stem cells may be useful in the future to improve the symptoms of Parkinson’s disease in the clinic. MDPI 2021-04-10 /pmc/articles/PMC8069047/ /pubmed/33920157 http://dx.doi.org/10.3390/cells10040864 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yamane, Michiko Takaoka, Nanako Obara, Koya Shirai, Kyoumi Aki, Ryoichi Hamada, Yuko Arakawa, Nobuko Hoffman, Robert M. Amoh, Yasuyuki Hair-Follicle-Associated Pluripotent (HAP) Stem Cells Can Extensively Differentiate to Tyrosine-Hydroxylase-Expressing Dopamine-Secreting Neurons |
title | Hair-Follicle-Associated Pluripotent (HAP) Stem Cells Can Extensively Differentiate to Tyrosine-Hydroxylase-Expressing Dopamine-Secreting Neurons |
title_full | Hair-Follicle-Associated Pluripotent (HAP) Stem Cells Can Extensively Differentiate to Tyrosine-Hydroxylase-Expressing Dopamine-Secreting Neurons |
title_fullStr | Hair-Follicle-Associated Pluripotent (HAP) Stem Cells Can Extensively Differentiate to Tyrosine-Hydroxylase-Expressing Dopamine-Secreting Neurons |
title_full_unstemmed | Hair-Follicle-Associated Pluripotent (HAP) Stem Cells Can Extensively Differentiate to Tyrosine-Hydroxylase-Expressing Dopamine-Secreting Neurons |
title_short | Hair-Follicle-Associated Pluripotent (HAP) Stem Cells Can Extensively Differentiate to Tyrosine-Hydroxylase-Expressing Dopamine-Secreting Neurons |
title_sort | hair-follicle-associated pluripotent (hap) stem cells can extensively differentiate to tyrosine-hydroxylase-expressing dopamine-secreting neurons |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069047/ https://www.ncbi.nlm.nih.gov/pubmed/33920157 http://dx.doi.org/10.3390/cells10040864 |
work_keys_str_mv | AT yamanemichiko hairfollicleassociatedpluripotenthapstemcellscanextensivelydifferentiatetotyrosinehydroxylaseexpressingdopaminesecretingneurons AT takaokananako hairfollicleassociatedpluripotenthapstemcellscanextensivelydifferentiatetotyrosinehydroxylaseexpressingdopaminesecretingneurons AT obarakoya hairfollicleassociatedpluripotenthapstemcellscanextensivelydifferentiatetotyrosinehydroxylaseexpressingdopaminesecretingneurons AT shiraikyoumi hairfollicleassociatedpluripotenthapstemcellscanextensivelydifferentiatetotyrosinehydroxylaseexpressingdopaminesecretingneurons AT akiryoichi hairfollicleassociatedpluripotenthapstemcellscanextensivelydifferentiatetotyrosinehydroxylaseexpressingdopaminesecretingneurons AT hamadayuko hairfollicleassociatedpluripotenthapstemcellscanextensivelydifferentiatetotyrosinehydroxylaseexpressingdopaminesecretingneurons AT arakawanobuko hairfollicleassociatedpluripotenthapstemcellscanextensivelydifferentiatetotyrosinehydroxylaseexpressingdopaminesecretingneurons AT hoffmanrobertm hairfollicleassociatedpluripotenthapstemcellscanextensivelydifferentiatetotyrosinehydroxylaseexpressingdopaminesecretingneurons AT amohyasuyuki hairfollicleassociatedpluripotenthapstemcellscanextensivelydifferentiatetotyrosinehydroxylaseexpressingdopaminesecretingneurons |