Cargando…
Effect of Thermal Buoyancy on Fluid Flow and Residence-Time Distribution in a Single-Strand Tundish
Natural convection of molten steel flow in a tundish occurs due to the temperature variation of the inlet stream and heat losses through top surface and refractory walls. A computational fluid dynamics (CFD) model was applied to study the effect of thermal buoyancy on fluid flow and residence-time d...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069059/ https://www.ncbi.nlm.nih.gov/pubmed/33920392 http://dx.doi.org/10.3390/ma14081906 |
_version_ | 1783683148510396416 |
---|---|
author | Sheng, Dong-Yuan Jönsson, Pär G. |
author_facet | Sheng, Dong-Yuan Jönsson, Pär G. |
author_sort | Sheng, Dong-Yuan |
collection | PubMed |
description | Natural convection of molten steel flow in a tundish occurs due to the temperature variation of the inlet stream and heat losses through top surface and refractory walls. A computational fluid dynamics (CFD) model was applied to study the effect of thermal buoyancy on fluid flow and residence-time distribution in a single-strand tundish. The CFD model was first validated with the experimental data from a non-isothermal water model and then applied to both scale-down model and prototype. The effects of flow control devices, including weir, dam and turbulence inhibitor, were compared and analyzed. Parameter studies of different heat losses through the top surface were performed. The results show that thermal buoyancy has a significant impact on the flow pattern and temperature distributions of molten steel in the tundish. The increase of heat loss through the top surface shortens the mean residence time of molten steel in the tundish, leading to an increase in dead volume fraction and a decrease in plug flow volume fraction. |
format | Online Article Text |
id | pubmed-8069059 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80690592021-04-26 Effect of Thermal Buoyancy on Fluid Flow and Residence-Time Distribution in a Single-Strand Tundish Sheng, Dong-Yuan Jönsson, Pär G. Materials (Basel) Article Natural convection of molten steel flow in a tundish occurs due to the temperature variation of the inlet stream and heat losses through top surface and refractory walls. A computational fluid dynamics (CFD) model was applied to study the effect of thermal buoyancy on fluid flow and residence-time distribution in a single-strand tundish. The CFD model was first validated with the experimental data from a non-isothermal water model and then applied to both scale-down model and prototype. The effects of flow control devices, including weir, dam and turbulence inhibitor, were compared and analyzed. Parameter studies of different heat losses through the top surface were performed. The results show that thermal buoyancy has a significant impact on the flow pattern and temperature distributions of molten steel in the tundish. The increase of heat loss through the top surface shortens the mean residence time of molten steel in the tundish, leading to an increase in dead volume fraction and a decrease in plug flow volume fraction. MDPI 2021-04-11 /pmc/articles/PMC8069059/ /pubmed/33920392 http://dx.doi.org/10.3390/ma14081906 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sheng, Dong-Yuan Jönsson, Pär G. Effect of Thermal Buoyancy on Fluid Flow and Residence-Time Distribution in a Single-Strand Tundish |
title | Effect of Thermal Buoyancy on Fluid Flow and Residence-Time Distribution in a Single-Strand Tundish |
title_full | Effect of Thermal Buoyancy on Fluid Flow and Residence-Time Distribution in a Single-Strand Tundish |
title_fullStr | Effect of Thermal Buoyancy on Fluid Flow and Residence-Time Distribution in a Single-Strand Tundish |
title_full_unstemmed | Effect of Thermal Buoyancy on Fluid Flow and Residence-Time Distribution in a Single-Strand Tundish |
title_short | Effect of Thermal Buoyancy on Fluid Flow and Residence-Time Distribution in a Single-Strand Tundish |
title_sort | effect of thermal buoyancy on fluid flow and residence-time distribution in a single-strand tundish |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069059/ https://www.ncbi.nlm.nih.gov/pubmed/33920392 http://dx.doi.org/10.3390/ma14081906 |
work_keys_str_mv | AT shengdongyuan effectofthermalbuoyancyonfluidflowandresidencetimedistributioninasinglestrandtundish AT jonssonparg effectofthermalbuoyancyonfluidflowandresidencetimedistributioninasinglestrandtundish |