Cargando…
Majority Voting-Based MAC Protocol for Exploiting Link-Layer Diversity in Wireless Networks †
In wireless local area networks (WLANs), the effect of interference signals between neighboring nodes increases as the number of wireless nodes using limited radio frequency resources in a limited space increases, which can significantly degrade the reliability of data transmission. In high-density...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069191/ https://www.ncbi.nlm.nih.gov/pubmed/33921407 http://dx.doi.org/10.3390/s21082706 |
Sumario: | In wireless local area networks (WLANs), the effect of interference signals between neighboring nodes increases as the number of wireless nodes using limited radio frequency resources in a limited space increases, which can significantly degrade the reliability of data transmission. In high-density WLANs, there can be several neighboring access points (APs) that can receive uplink transmission from a station. In conventional medium access control (MAC) protocols, uplink data frames containing errors or transmitted from a non-associated station are discarded at APs. Alternatively, we propose a MAC protocol using redundant wireless links between neighboring APs and the non-associated stations. In the proposed MAC protocol, we consider a centralized WLAN with a control node that performs error corrections of erroneous uplink data frames via a majority voting algorithm-based link-layer diversity scheme using uplink data received from multiple APs to increase the reliability of data transmission. In addition, we propose an adaptive carrier sensing ranging mechanism to improve the uplink network throughput in the proposed centralized WLAN system. Further, we conduct simulation studies and software-defined radio-based experiments to evaluate the performance of the proposed MAC protocol in various WLAN scenarios. |
---|