Cargando…

Size-Based Routing Policies: Non-Asymptotic Analysis and Design of Decentralized Systems †

Size-based routing policies are known to perform well when the variance of the distribution of the job size is very high. We consider two size-based policies in this paper: Task Assignment with Guessing Size (TAGS) and Size Interval Task Assignment (SITA). The latter assumes that the size of jobs is...

Descripción completa

Detalles Bibliográficos
Autores principales: Bachmat, Eitan, Doncel, Josu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069322/
https://www.ncbi.nlm.nih.gov/pubmed/33921214
http://dx.doi.org/10.3390/s21082701
_version_ 1783683210033496064
author Bachmat, Eitan
Doncel, Josu
author_facet Bachmat, Eitan
Doncel, Josu
author_sort Bachmat, Eitan
collection PubMed
description Size-based routing policies are known to perform well when the variance of the distribution of the job size is very high. We consider two size-based policies in this paper: Task Assignment with Guessing Size (TAGS) and Size Interval Task Assignment (SITA). The latter assumes that the size of jobs is known, whereas the former does not. Recently, it has been shown by our previous work that when the ratio of the largest to shortest job tends to infinity and the system load is fixed and low, the average waiting time of SITA is, at most, two times less than that of TAGS. In this article, we first analyze the ratio between the mean waiting time of TAGS and the mean waiting time of SITA in a non-asymptotic regime, and we show that for two servers, and when the job size distribution is Bounded Pareto with parameter [Formula: see text] , this ratio is unbounded from above. We then consider a system with an arbitrary number of servers and we compare the mean waiting time of TAGS with that of Size Interval Task Assignment with Equal load (SITA-E), which is a SITA policy where the load of all the servers are equal. We show that in the light traffic regime, the performance ratio under consideration is unbounded from above when (i) the job size distribution is Bounded Pareto with parameter [Formula: see text] and an arbitrary number of servers as well as (ii) for Bounded Pareto distributed job sizes with [Formula: see text] and the number of servers tends to infinity. Finally, we use the result of our previous work to show how to design decentralized systems with quality of service constraints.
format Online
Article
Text
id pubmed-8069322
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-80693222021-04-26 Size-Based Routing Policies: Non-Asymptotic Analysis and Design of Decentralized Systems † Bachmat, Eitan Doncel, Josu Sensors (Basel) Article Size-based routing policies are known to perform well when the variance of the distribution of the job size is very high. We consider two size-based policies in this paper: Task Assignment with Guessing Size (TAGS) and Size Interval Task Assignment (SITA). The latter assumes that the size of jobs is known, whereas the former does not. Recently, it has been shown by our previous work that when the ratio of the largest to shortest job tends to infinity and the system load is fixed and low, the average waiting time of SITA is, at most, two times less than that of TAGS. In this article, we first analyze the ratio between the mean waiting time of TAGS and the mean waiting time of SITA in a non-asymptotic regime, and we show that for two servers, and when the job size distribution is Bounded Pareto with parameter [Formula: see text] , this ratio is unbounded from above. We then consider a system with an arbitrary number of servers and we compare the mean waiting time of TAGS with that of Size Interval Task Assignment with Equal load (SITA-E), which is a SITA policy where the load of all the servers are equal. We show that in the light traffic regime, the performance ratio under consideration is unbounded from above when (i) the job size distribution is Bounded Pareto with parameter [Formula: see text] and an arbitrary number of servers as well as (ii) for Bounded Pareto distributed job sizes with [Formula: see text] and the number of servers tends to infinity. Finally, we use the result of our previous work to show how to design decentralized systems with quality of service constraints. MDPI 2021-04-12 /pmc/articles/PMC8069322/ /pubmed/33921214 http://dx.doi.org/10.3390/s21082701 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Bachmat, Eitan
Doncel, Josu
Size-Based Routing Policies: Non-Asymptotic Analysis and Design of Decentralized Systems †
title Size-Based Routing Policies: Non-Asymptotic Analysis and Design of Decentralized Systems †
title_full Size-Based Routing Policies: Non-Asymptotic Analysis and Design of Decentralized Systems †
title_fullStr Size-Based Routing Policies: Non-Asymptotic Analysis and Design of Decentralized Systems †
title_full_unstemmed Size-Based Routing Policies: Non-Asymptotic Analysis and Design of Decentralized Systems †
title_short Size-Based Routing Policies: Non-Asymptotic Analysis and Design of Decentralized Systems †
title_sort size-based routing policies: non-asymptotic analysis and design of decentralized systems †
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069322/
https://www.ncbi.nlm.nih.gov/pubmed/33921214
http://dx.doi.org/10.3390/s21082701
work_keys_str_mv AT bachmateitan sizebasedroutingpoliciesnonasymptoticanalysisanddesignofdecentralizedsystems
AT donceljosu sizebasedroutingpoliciesnonasymptoticanalysisanddesignofdecentralizedsystems