Cargando…
A Comparative Analysis of Novel Deep Learning and Ensemble Learning Models to Predict the Allergenicity of Food Proteins
Traditional food allergen identification mainly relies on in vivo and in vitro experiments, which often needs a long period and high cost. The artificial intelligence (AI)-driven rapid food allergen identification method has solved the above mentioned some drawbacks and is becoming an efficient auxi...
Autores principales: | Wang, Liyang, Niu, Dantong, Zhao, Xinjie, Wang, Xiaoya, Hao, Mengzhen, Che, Huilian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069377/ https://www.ncbi.nlm.nih.gov/pubmed/33918556 http://dx.doi.org/10.3390/foods10040809 |
Ejemplares similares
-
A Novel Machine Learning Strategy for the Prediction of Antihypertensive Peptides Derived from Food with High Efficiency
por: Wang, Liyang, et al.
Publicado: (2021) -
IGRNet: A Deep Learning Model for Non-Invasive, Real-Time Diagnosis of Prediabetes through Electrocardiograms
por: Wang, Liyang, et al.
Publicado: (2020) -
A deep learning based ensemble approach for protein allergen classification
por: Kumar, Arun, et al.
Publicado: (2023) -
Food Allergens of Plant Origin
por: Zhang, Yuzhu, et al.
Publicado: (2023) -
Identification of Allergens in White- and Red-Fleshed Pitaya (Selenicereus undatus and Selenicereus costaricensis) Seeds Using Bottom-Up Proteomics Coupled with Immunoinformatics
por: Hao, Mengzhen, et al.
Publicado: (2022)