Cargando…

Head-to-Head Evaluation of Five Automated SARS-CoV-2 Serology Immunoassays in Various Prevalence Settings

Purpose: To assess the diagnostic performances of five automated anti-SARS-CoV-2 immunoassays, Epitope (N), Diasorin (S1/S2), Euroimmun (S1), Roche N (N), and Roche S (S-RBD), and to provide a testing strategy based on pre-test probability. Methods: We assessed the receiver operating characteristic...

Descripción completa

Detalles Bibliográficos
Autores principales: Andrey, Diego O., Yerly, Sabine, Meyer, Benjamin, Arm-Vernez, Isabelle, Roux-Lombard, Pascale, Togni, Giuseppe, Guessous, Idris, Spechbach, Hervé, Stringhini, Silvia, Agoritsas, Thomas, Stirnemann, Jérôme, Reny, Jean-Luc, Siegrist, Claire-Anne, Eckerle, Isabella, Kaiser, Laurent, Vuilleumier, Nicolas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069412/
https://www.ncbi.nlm.nih.gov/pubmed/33920076
http://dx.doi.org/10.3390/jcm10081605
_version_ 1783683231046959104
author Andrey, Diego O.
Yerly, Sabine
Meyer, Benjamin
Arm-Vernez, Isabelle
Roux-Lombard, Pascale
Togni, Giuseppe
Guessous, Idris
Spechbach, Hervé
Stringhini, Silvia
Agoritsas, Thomas
Stirnemann, Jérôme
Reny, Jean-Luc
Siegrist, Claire-Anne
Eckerle, Isabella
Kaiser, Laurent
Vuilleumier, Nicolas
author_facet Andrey, Diego O.
Yerly, Sabine
Meyer, Benjamin
Arm-Vernez, Isabelle
Roux-Lombard, Pascale
Togni, Giuseppe
Guessous, Idris
Spechbach, Hervé
Stringhini, Silvia
Agoritsas, Thomas
Stirnemann, Jérôme
Reny, Jean-Luc
Siegrist, Claire-Anne
Eckerle, Isabella
Kaiser, Laurent
Vuilleumier, Nicolas
author_sort Andrey, Diego O.
collection PubMed
description Purpose: To assess the diagnostic performances of five automated anti-SARS-CoV-2 immunoassays, Epitope (N), Diasorin (S1/S2), Euroimmun (S1), Roche N (N), and Roche S (S-RBD), and to provide a testing strategy based on pre-test probability. Methods: We assessed the receiver operating characteristic (ROC) areas under the curve (AUC) values, along with the sensitivity, specificity, positive predictive values (PPVs), and negative predictive values (NPVs), of each assay using a validation sample set of 172 COVID-19 sera and 185 negative controls against a validated S1-immunofluorescence as a reference method. The three assays displaying the highest AUCs were selected for further serodetection of 2033 sera of a large population-based cohort. Results: In the validation analysis (pre-test probability: 48.1%), Roche N, Roche S and Euroimmun showed the highest discriminant accuracy (AUCs: 0.99, 0.98, and 0.98) with PPVs and NPVs above 96% and 94%, respectively. In the population-based cohort (pre-test probability: 6.2%) these three assays displayed AUCs above 0.97 and PPVs and NPVs above 90.5% and 99.4%, respectively. A sequential strategy using an anti-S assay as screening test and an anti-N as confirmatory assays resulted in a 96.7% PPV and 99.5% NPV, respectively. Conclusions: Euroimmun and both Roche assays performed equally well in high pre-test probability settings. At a lower prevalence, sequentially combining anti-S and anti-N assays resulted in the optimal trade-off between diagnostic performances and operational considerations.
format Online
Article
Text
id pubmed-8069412
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-80694122021-04-26 Head-to-Head Evaluation of Five Automated SARS-CoV-2 Serology Immunoassays in Various Prevalence Settings Andrey, Diego O. Yerly, Sabine Meyer, Benjamin Arm-Vernez, Isabelle Roux-Lombard, Pascale Togni, Giuseppe Guessous, Idris Spechbach, Hervé Stringhini, Silvia Agoritsas, Thomas Stirnemann, Jérôme Reny, Jean-Luc Siegrist, Claire-Anne Eckerle, Isabella Kaiser, Laurent Vuilleumier, Nicolas J Clin Med Article Purpose: To assess the diagnostic performances of five automated anti-SARS-CoV-2 immunoassays, Epitope (N), Diasorin (S1/S2), Euroimmun (S1), Roche N (N), and Roche S (S-RBD), and to provide a testing strategy based on pre-test probability. Methods: We assessed the receiver operating characteristic (ROC) areas under the curve (AUC) values, along with the sensitivity, specificity, positive predictive values (PPVs), and negative predictive values (NPVs), of each assay using a validation sample set of 172 COVID-19 sera and 185 negative controls against a validated S1-immunofluorescence as a reference method. The three assays displaying the highest AUCs were selected for further serodetection of 2033 sera of a large population-based cohort. Results: In the validation analysis (pre-test probability: 48.1%), Roche N, Roche S and Euroimmun showed the highest discriminant accuracy (AUCs: 0.99, 0.98, and 0.98) with PPVs and NPVs above 96% and 94%, respectively. In the population-based cohort (pre-test probability: 6.2%) these three assays displayed AUCs above 0.97 and PPVs and NPVs above 90.5% and 99.4%, respectively. A sequential strategy using an anti-S assay as screening test and an anti-N as confirmatory assays resulted in a 96.7% PPV and 99.5% NPV, respectively. Conclusions: Euroimmun and both Roche assays performed equally well in high pre-test probability settings. At a lower prevalence, sequentially combining anti-S and anti-N assays resulted in the optimal trade-off between diagnostic performances and operational considerations. MDPI 2021-04-10 /pmc/articles/PMC8069412/ /pubmed/33920076 http://dx.doi.org/10.3390/jcm10081605 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Andrey, Diego O.
Yerly, Sabine
Meyer, Benjamin
Arm-Vernez, Isabelle
Roux-Lombard, Pascale
Togni, Giuseppe
Guessous, Idris
Spechbach, Hervé
Stringhini, Silvia
Agoritsas, Thomas
Stirnemann, Jérôme
Reny, Jean-Luc
Siegrist, Claire-Anne
Eckerle, Isabella
Kaiser, Laurent
Vuilleumier, Nicolas
Head-to-Head Evaluation of Five Automated SARS-CoV-2 Serology Immunoassays in Various Prevalence Settings
title Head-to-Head Evaluation of Five Automated SARS-CoV-2 Serology Immunoassays in Various Prevalence Settings
title_full Head-to-Head Evaluation of Five Automated SARS-CoV-2 Serology Immunoassays in Various Prevalence Settings
title_fullStr Head-to-Head Evaluation of Five Automated SARS-CoV-2 Serology Immunoassays in Various Prevalence Settings
title_full_unstemmed Head-to-Head Evaluation of Five Automated SARS-CoV-2 Serology Immunoassays in Various Prevalence Settings
title_short Head-to-Head Evaluation of Five Automated SARS-CoV-2 Serology Immunoassays in Various Prevalence Settings
title_sort head-to-head evaluation of five automated sars-cov-2 serology immunoassays in various prevalence settings
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069412/
https://www.ncbi.nlm.nih.gov/pubmed/33920076
http://dx.doi.org/10.3390/jcm10081605
work_keys_str_mv AT andreydiegoo headtoheadevaluationoffiveautomatedsarscov2serologyimmunoassaysinvariousprevalencesettings
AT yerlysabine headtoheadevaluationoffiveautomatedsarscov2serologyimmunoassaysinvariousprevalencesettings
AT meyerbenjamin headtoheadevaluationoffiveautomatedsarscov2serologyimmunoassaysinvariousprevalencesettings
AT armvernezisabelle headtoheadevaluationoffiveautomatedsarscov2serologyimmunoassaysinvariousprevalencesettings
AT rouxlombardpascale headtoheadevaluationoffiveautomatedsarscov2serologyimmunoassaysinvariousprevalencesettings
AT tognigiuseppe headtoheadevaluationoffiveautomatedsarscov2serologyimmunoassaysinvariousprevalencesettings
AT guessousidris headtoheadevaluationoffiveautomatedsarscov2serologyimmunoassaysinvariousprevalencesettings
AT spechbachherve headtoheadevaluationoffiveautomatedsarscov2serologyimmunoassaysinvariousprevalencesettings
AT stringhinisilvia headtoheadevaluationoffiveautomatedsarscov2serologyimmunoassaysinvariousprevalencesettings
AT agoritsasthomas headtoheadevaluationoffiveautomatedsarscov2serologyimmunoassaysinvariousprevalencesettings
AT stirnemannjerome headtoheadevaluationoffiveautomatedsarscov2serologyimmunoassaysinvariousprevalencesettings
AT renyjeanluc headtoheadevaluationoffiveautomatedsarscov2serologyimmunoassaysinvariousprevalencesettings
AT siegristclaireanne headtoheadevaluationoffiveautomatedsarscov2serologyimmunoassaysinvariousprevalencesettings
AT eckerleisabella headtoheadevaluationoffiveautomatedsarscov2serologyimmunoassaysinvariousprevalencesettings
AT kaiserlaurent headtoheadevaluationoffiveautomatedsarscov2serologyimmunoassaysinvariousprevalencesettings
AT vuilleumiernicolas headtoheadevaluationoffiveautomatedsarscov2serologyimmunoassaysinvariousprevalencesettings