Cargando…
Prolyl 3-Hydroxylase 2 Is a Molecular Player of Angiogenesis
Prolyl 3-hydroxylase 2 (P3H2) catalyzes the post-translational formation of 3-hydroxyproline on collagens, mainly on type IV. Its activity has never been directly associated to angiogenesis. Here, we identified P3H2 gene through a deep-sequencing transcriptome analysis of human umbilical vein endoth...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069486/ https://www.ncbi.nlm.nih.gov/pubmed/33918807 http://dx.doi.org/10.3390/ijms22083896 |
_version_ | 1783683248139796480 |
---|---|
author | Pignata, Paola Apicella, Ivana Cicatiello, Valeria Puglisi, Caterina Magliacane Trotta, Sara Sanges, Remo Tarallo, Valeria De Falco, Sandro |
author_facet | Pignata, Paola Apicella, Ivana Cicatiello, Valeria Puglisi, Caterina Magliacane Trotta, Sara Sanges, Remo Tarallo, Valeria De Falco, Sandro |
author_sort | Pignata, Paola |
collection | PubMed |
description | Prolyl 3-hydroxylase 2 (P3H2) catalyzes the post-translational formation of 3-hydroxyproline on collagens, mainly on type IV. Its activity has never been directly associated to angiogenesis. Here, we identified P3H2 gene through a deep-sequencing transcriptome analysis of human umbilical vein endothelial cells (HUVECs) stimulated with vascular endothelial growth factor A (VEGF-A). Differently from many previous studies we carried out the stimulation not on starved HUVECs, but on cells grown to maintain the best condition for their in vitro survival and propagation. We showed that P3H2 is induced by VEGF-A in two primary human endothelial cell lines and that its transcription is modulated by VEGF-A/VEGF receptor 2 (VEGFR-2) signaling pathway through p38 mitogen-activated protein kinase (MAPK). Then, we demonstrated that P3H2, through its activity on type IV Collagen, is essential for angiogenesis properties of endothelial cells in vitro by performing experiments of gain- and loss-of-function. Immunofluorescence studies showed that the overexpression of P3H2 induced a more condensed status of Collagen IV, accompanied by an alignment of the cells along the Collagen IV bundles, so towards an evident pro-angiogenic status. Finally, we found that P3H2 knockdown prevents pathological angiogenesis in vivo, in the model of laser-induced choroid neovascularization. Together these findings reveal that P3H2 is a new molecular player involved in new vessels formation and could be considered as a potential target for anti-angiogenesis therapy. |
format | Online Article Text |
id | pubmed-8069486 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80694862021-04-26 Prolyl 3-Hydroxylase 2 Is a Molecular Player of Angiogenesis Pignata, Paola Apicella, Ivana Cicatiello, Valeria Puglisi, Caterina Magliacane Trotta, Sara Sanges, Remo Tarallo, Valeria De Falco, Sandro Int J Mol Sci Article Prolyl 3-hydroxylase 2 (P3H2) catalyzes the post-translational formation of 3-hydroxyproline on collagens, mainly on type IV. Its activity has never been directly associated to angiogenesis. Here, we identified P3H2 gene through a deep-sequencing transcriptome analysis of human umbilical vein endothelial cells (HUVECs) stimulated with vascular endothelial growth factor A (VEGF-A). Differently from many previous studies we carried out the stimulation not on starved HUVECs, but on cells grown to maintain the best condition for their in vitro survival and propagation. We showed that P3H2 is induced by VEGF-A in two primary human endothelial cell lines and that its transcription is modulated by VEGF-A/VEGF receptor 2 (VEGFR-2) signaling pathway through p38 mitogen-activated protein kinase (MAPK). Then, we demonstrated that P3H2, through its activity on type IV Collagen, is essential for angiogenesis properties of endothelial cells in vitro by performing experiments of gain- and loss-of-function. Immunofluorescence studies showed that the overexpression of P3H2 induced a more condensed status of Collagen IV, accompanied by an alignment of the cells along the Collagen IV bundles, so towards an evident pro-angiogenic status. Finally, we found that P3H2 knockdown prevents pathological angiogenesis in vivo, in the model of laser-induced choroid neovascularization. Together these findings reveal that P3H2 is a new molecular player involved in new vessels formation and could be considered as a potential target for anti-angiogenesis therapy. MDPI 2021-04-09 /pmc/articles/PMC8069486/ /pubmed/33918807 http://dx.doi.org/10.3390/ijms22083896 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pignata, Paola Apicella, Ivana Cicatiello, Valeria Puglisi, Caterina Magliacane Trotta, Sara Sanges, Remo Tarallo, Valeria De Falco, Sandro Prolyl 3-Hydroxylase 2 Is a Molecular Player of Angiogenesis |
title | Prolyl 3-Hydroxylase 2 Is a Molecular Player of Angiogenesis |
title_full | Prolyl 3-Hydroxylase 2 Is a Molecular Player of Angiogenesis |
title_fullStr | Prolyl 3-Hydroxylase 2 Is a Molecular Player of Angiogenesis |
title_full_unstemmed | Prolyl 3-Hydroxylase 2 Is a Molecular Player of Angiogenesis |
title_short | Prolyl 3-Hydroxylase 2 Is a Molecular Player of Angiogenesis |
title_sort | prolyl 3-hydroxylase 2 is a molecular player of angiogenesis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069486/ https://www.ncbi.nlm.nih.gov/pubmed/33918807 http://dx.doi.org/10.3390/ijms22083896 |
work_keys_str_mv | AT pignatapaola prolyl3hydroxylase2isamolecularplayerofangiogenesis AT apicellaivana prolyl3hydroxylase2isamolecularplayerofangiogenesis AT cicatiellovaleria prolyl3hydroxylase2isamolecularplayerofangiogenesis AT puglisicaterina prolyl3hydroxylase2isamolecularplayerofangiogenesis AT magliacanetrottasara prolyl3hydroxylase2isamolecularplayerofangiogenesis AT sangesremo prolyl3hydroxylase2isamolecularplayerofangiogenesis AT tarallovaleria prolyl3hydroxylase2isamolecularplayerofangiogenesis AT defalcosandro prolyl3hydroxylase2isamolecularplayerofangiogenesis |