Cargando…
Comparison and Fusion of Machine Learning Algorithms for Prospective Validation of PET/CT Radiomic Features Prognostic Value in Stage II-III Non-Small Cell Lung Cancer
Machine learning (ML) algorithms for selecting and combining radiomic features into multiparametric prediction models have become popular; however, it has been shown that large variations in performance can be obtained by relying on different approaches. The purpose of this study was to evaluate the...
Autores principales: | Sepehri, Shima, Tankyevych, Olena, Upadhaya, Taman, Visvikis, Dimitris, Hatt, Mathieu, Cheze Le Rest, Catherine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069690/ https://www.ncbi.nlm.nih.gov/pubmed/33918681 http://dx.doi.org/10.3390/diagnostics11040675 |
Ejemplares similares
-
Accurate Tumor Delineation vs. Rough Volume of Interest Analysis for (18)F-FDG PET/CT Radiomics-Based Prognostic Modeling inNon-Small Cell Lung Cancer
por: Sepehri, Shima, et al.
Publicado: (2021) -
Revisiting the identification of tumor sub-volumes predictive of residual uptake after (chemo)radiotherapy: influence of segmentation methods on (18)F-FDG PET/CT images
por: Hatt, Mathieu, et al.
Publicado: (2019) -
Transcriptomics in cancer revealed by Positron Emission Tomography radiomics
por: Tixier, Florent, et al.
Publicado: (2020) -
Radiogenomics in Colorectal Cancer
por: Badic, Bogdan, et al.
Publicado: (2021) -
Correlation of Intra-Tumor (18)F-FDG Uptake Heterogeneity Indices with Perfusion CT Derived Parameters in Colorectal Cancer
por: Tixier, Florent, et al.
Publicado: (2014)