Cargando…
Performance Evaluation of Modified Rubberized Concrete Exposed to Aggressive Environments
Recycling of the waste rubber tire crumbs (WRTCs) for the concretes production generated renewed interest worldwide. The insertion of such waste as a substitute for the natural aggregates in the concretes is an emergent trend for sustainable development towards building materials. Meanwhile, the enh...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069696/ https://www.ncbi.nlm.nih.gov/pubmed/33920340 http://dx.doi.org/10.3390/ma14081900 |
_version_ | 1783683297668235264 |
---|---|
author | M. Mhaya, Akram Baghban, Mohammad Hajmohammadian Faridmehr, Iman Huseien, Ghasan Fahim Abidin, Ahmad Razin Zainal Ismail, Mohammad |
author_facet | M. Mhaya, Akram Baghban, Mohammad Hajmohammadian Faridmehr, Iman Huseien, Ghasan Fahim Abidin, Ahmad Razin Zainal Ismail, Mohammad |
author_sort | M. Mhaya, Akram |
collection | PubMed |
description | Recycling of the waste rubber tire crumbs (WRTCs) for the concretes production generated renewed interest worldwide. The insertion of such waste as a substitute for the natural aggregates in the concretes is an emergent trend for sustainable development towards building materials. Meanwhile, the enhanced resistance of the concrete structures against aggressive environments is important for durability, cost-saving, and sustainability. In this view, this research evaluated the performance of several modified rubberized concretes by exposing them to aggressive environments i.e., acid, and sulphate attacks, elevated temperatures. These concrete (12 batches) were made by replacing the cement and natural aggregate with an appropriate amount of the granulated blast furnace slag (GBFS) and WRTCs, respectively. The proposed mix designs’ performance was evaluated by several measures, including the residual compressive strength (CS), weight loss, ultrasonic pulse velocity (UPV), microstructures, etc. Besides, by using the available experimental test database, an optimized artificial neural network (ANN) combined with the particle swarm optimization (PSO) was developed to estimate the residual CS of modified rubberized concrete after immersion one year in MgSO(4) and H(2)SO(4) solutions. The results indicated that modified rubberized concrete prepared by 5 to 20% WRTCs as a substitute to natural aggregate, provided lower CS and weight lose expose to sulphate and acid attacks compared to control specimen prepared by ordinary Portland cement (OPC). Although the CS were slightly declined at the elevated temperature, these proposed mix designs have a high potential for a wide variety of concrete industrial applications, especially in acid and sulphate risk. |
format | Online Article Text |
id | pubmed-8069696 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80696962021-04-26 Performance Evaluation of Modified Rubberized Concrete Exposed to Aggressive Environments M. Mhaya, Akram Baghban, Mohammad Hajmohammadian Faridmehr, Iman Huseien, Ghasan Fahim Abidin, Ahmad Razin Zainal Ismail, Mohammad Materials (Basel) Article Recycling of the waste rubber tire crumbs (WRTCs) for the concretes production generated renewed interest worldwide. The insertion of such waste as a substitute for the natural aggregates in the concretes is an emergent trend for sustainable development towards building materials. Meanwhile, the enhanced resistance of the concrete structures against aggressive environments is important for durability, cost-saving, and sustainability. In this view, this research evaluated the performance of several modified rubberized concretes by exposing them to aggressive environments i.e., acid, and sulphate attacks, elevated temperatures. These concrete (12 batches) were made by replacing the cement and natural aggregate with an appropriate amount of the granulated blast furnace slag (GBFS) and WRTCs, respectively. The proposed mix designs’ performance was evaluated by several measures, including the residual compressive strength (CS), weight loss, ultrasonic pulse velocity (UPV), microstructures, etc. Besides, by using the available experimental test database, an optimized artificial neural network (ANN) combined with the particle swarm optimization (PSO) was developed to estimate the residual CS of modified rubberized concrete after immersion one year in MgSO(4) and H(2)SO(4) solutions. The results indicated that modified rubberized concrete prepared by 5 to 20% WRTCs as a substitute to natural aggregate, provided lower CS and weight lose expose to sulphate and acid attacks compared to control specimen prepared by ordinary Portland cement (OPC). Although the CS were slightly declined at the elevated temperature, these proposed mix designs have a high potential for a wide variety of concrete industrial applications, especially in acid and sulphate risk. MDPI 2021-04-11 /pmc/articles/PMC8069696/ /pubmed/33920340 http://dx.doi.org/10.3390/ma14081900 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article M. Mhaya, Akram Baghban, Mohammad Hajmohammadian Faridmehr, Iman Huseien, Ghasan Fahim Abidin, Ahmad Razin Zainal Ismail, Mohammad Performance Evaluation of Modified Rubberized Concrete Exposed to Aggressive Environments |
title | Performance Evaluation of Modified Rubberized Concrete Exposed to Aggressive Environments |
title_full | Performance Evaluation of Modified Rubberized Concrete Exposed to Aggressive Environments |
title_fullStr | Performance Evaluation of Modified Rubberized Concrete Exposed to Aggressive Environments |
title_full_unstemmed | Performance Evaluation of Modified Rubberized Concrete Exposed to Aggressive Environments |
title_short | Performance Evaluation of Modified Rubberized Concrete Exposed to Aggressive Environments |
title_sort | performance evaluation of modified rubberized concrete exposed to aggressive environments |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069696/ https://www.ncbi.nlm.nih.gov/pubmed/33920340 http://dx.doi.org/10.3390/ma14081900 |
work_keys_str_mv | AT mmhayaakram performanceevaluationofmodifiedrubberizedconcreteexposedtoaggressiveenvironments AT baghbanmohammadhajmohammadian performanceevaluationofmodifiedrubberizedconcreteexposedtoaggressiveenvironments AT faridmehriman performanceevaluationofmodifiedrubberizedconcreteexposedtoaggressiveenvironments AT huseienghasanfahim performanceevaluationofmodifiedrubberizedconcreteexposedtoaggressiveenvironments AT abidinahmadrazinzainal performanceevaluationofmodifiedrubberizedconcreteexposedtoaggressiveenvironments AT ismailmohammad performanceevaluationofmodifiedrubberizedconcreteexposedtoaggressiveenvironments |