Cargando…
Research on Channel Selection and Multi-Feature Fusion of EEG Signals for Mental Fatigue Detection
With the rapid development of modern social science and technology, the pace of life is getting faster, and brain fatigue has become a sub-health state that seriously affects the normal life of people. Electroencephalogram (EEG) signals reflect changes in the central nervous system. Using EEG signal...
Autores principales: | Liu, Quan, Liu, Yang, Chen, Kun, Wang, Lei, Li, Zhilei, Ai, Qingsong, Ma, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069717/ https://www.ncbi.nlm.nih.gov/pubmed/33924528 http://dx.doi.org/10.3390/e23040457 |
Ejemplares similares
-
Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata
por: Liu, Aiming, et al.
Publicado: (2017) -
A New Feature Analysis Approach to Selecting Channels of EEG for Fatigue Driving
por: Liao, Yiqi, et al.
Publicado: (2022) -
EEG Emotion Classification Network Based on Attention Fusion of Multi-Channel Band Features
por: Zhu, Xiaoliang, et al.
Publicado: (2022) -
EEG Emotion Recognition by Fusion of Multi-Scale Features
por: Du, Xiuli, et al.
Publicado: (2023) -
Multidimensional Feature in Emotion Recognition Based on Multi-Channel EEG Signals
por: Li, Qi, et al.
Publicado: (2022)