Cargando…
A New Method Based on Time-Varying Filtering Intrinsic Time-Scale Decomposition and General Refined Composite Multiscale Sample Entropy for Rolling-Bearing Feature Extraction
The early fault diagnosis of rolling bearings has always been a difficult problem due to the interference of strong noise. This paper proposes a new method of early fault diagnosis for rolling bearings with entropy participation. First, a new signal decomposition method is proposed in this paper: in...
Autores principales: | Ma, Jianpeng, Han, Song, Li, Chengwei, Zhan, Liwei, Zhang, Guang-zhu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069719/ https://www.ncbi.nlm.nih.gov/pubmed/33920417 http://dx.doi.org/10.3390/e23040451 |
Ejemplares similares
-
Rolling Bearing Fault Diagnosis Based on Refined Composite Multi-Scale Approximate Entropy and Optimized Probabilistic Neural Network
por: Ma, Jianpeng, et al.
Publicado: (2021) -
Fault Diagnosis of a Rolling Bearing Based on Adaptive Sparest Narrow-Band Decomposition and RefinedComposite Multiscale Dispersion Entropy
por: Luo, Songrong, et al.
Publicado: (2020) -
Early Fault Detection of Rolling Bearings Based on Time-Varying Filtering Empirical Mode Decomposition and Adaptive Multipoint Optimal Minimum Entropy Deconvolution Adjusted
por: Song, Shuo, et al.
Publicado: (2023) -
A Comprehensive Fault Diagnosis Method for Rolling Bearings Based on Refined Composite Multiscale Dispersion Entropy and Fast Ensemble Empirical Mode Decomposition
por: Zhang, Weibo, et al.
Publicado: (2019) -
Intelligent Diagnosis of Rolling Element Bearing Based on Refined Composite Multiscale Reverse Dispersion Entropy and Random Forest
por: Liu, Aiqiang, et al.
Publicado: (2022)