Cargando…
Wing Morphometrics of Aedes Mosquitoes from North-Eastern France
SIMPLE SUMMARY: Mosquitoes act as vectors of arboviruses and their correct identification is very important to understanding the diseases they transmit. To date, this identification is based on several techniques that are either expensive or time consuming. Wing geometric morphometrics allow fast an...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069731/ https://www.ncbi.nlm.nih.gov/pubmed/33921410 http://dx.doi.org/10.3390/insects12040341 |
Sumario: | SIMPLE SUMMARY: Mosquitoes act as vectors of arboviruses and their correct identification is very important to understanding the diseases they transmit. To date, this identification is based on several techniques that are either expensive or time consuming. Wing geometric morphometrics allow fast and accurate mosquito identification. By analyzing the pattern of wing venation, it is possible to separate mosquito species. We applied this technique on six Aedes mosquito species from north-eastern France. Our results show a very good differentiation of these species. The use of wing geometric morphometrics could increase the efficiency of field entomologists in case of viral outbreaks. Integrated with existing morphological identification software, it might help relocate mosquito identification from the lab to the field. ABSTRACT: Background: In the context of the increasing circulation of arboviruses, a simple, fast and reliable identification method for mosquitoes is needed. Geometric morphometrics have proven useful for mosquito classification and have been used around the world on known vectors such as Aedes albopictus. Morphometrics applied on French indigenous mosquitoes would prove useful in the case of autochthonous outbreaks of arboviral diseases. Methods: We applied geometric morphometric analysis on six indigenous and invasive species of the Aedes genus in order to evaluate its efficiency for mosquito classification. Results: Six species of Aedes mosquitoes (Ae. albopictus, Ae. cantans, Ae. cinereus, Ae. sticticus, Ae. japonicus and Ae. rusticus) were successfully differentiated with Canonical Variate Analysis of the Procrustes dataset of superimposed coordinates of 18 wing landmarks. Conclusions: Geometric morphometrics are effective tools for the rapid, inexpensive and reliable classification of at least six species of the Aedes genus in France. |
---|