Cargando…
Automated IoT Device Identification Based on Full Packet Information Using Real-Time Network Traffic
In an Internet of Things (IoT) environment, a large volume of potentially confidential data might be leaked from sensors installed everywhere. To ensure the authenticity of such sensitive data, it is important to initially verify the source of data and its identity. Practically, IoT device identific...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069928/ https://www.ncbi.nlm.nih.gov/pubmed/33920110 http://dx.doi.org/10.3390/s21082660 |
_version_ | 1783683352037949440 |
---|---|
author | Yousefnezhad, Narges Malhi, Avleen Främling, Kary |
author_facet | Yousefnezhad, Narges Malhi, Avleen Främling, Kary |
author_sort | Yousefnezhad, Narges |
collection | PubMed |
description | In an Internet of Things (IoT) environment, a large volume of potentially confidential data might be leaked from sensors installed everywhere. To ensure the authenticity of such sensitive data, it is important to initially verify the source of data and its identity. Practically, IoT device identification is the primary step toward a secure IoT system. An appropriate device identification approach can counteract malicious activities such as sending false data that trigger irreparable security issues in vital or emergency situations. Recent research indicates that primary identity metrics such as Internet Protocol (IP) or Media Access Control (MAC) addresses are insufficient due to their instability or easy accessibility. Thus, to identify an IoT device, analysis of the header information of packets by the sensors is of imperative consideration. This paper proposes a combination of sensor measurement and statistical feature sets in addition to a header feature set using a classification-based device identification framework. Various machine Learning algorithms have been adopted to identify different combinations of these feature sets to provide enhanced security in IoT devices. The proposed method has been evaluated through normal and under-attack circumstances by collecting real-time data from IoT devices connected in a lab setting to show the system robustness. |
format | Online Article Text |
id | pubmed-8069928 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80699282021-04-26 Automated IoT Device Identification Based on Full Packet Information Using Real-Time Network Traffic Yousefnezhad, Narges Malhi, Avleen Främling, Kary Sensors (Basel) Article In an Internet of Things (IoT) environment, a large volume of potentially confidential data might be leaked from sensors installed everywhere. To ensure the authenticity of such sensitive data, it is important to initially verify the source of data and its identity. Practically, IoT device identification is the primary step toward a secure IoT system. An appropriate device identification approach can counteract malicious activities such as sending false data that trigger irreparable security issues in vital or emergency situations. Recent research indicates that primary identity metrics such as Internet Protocol (IP) or Media Access Control (MAC) addresses are insufficient due to their instability or easy accessibility. Thus, to identify an IoT device, analysis of the header information of packets by the sensors is of imperative consideration. This paper proposes a combination of sensor measurement and statistical feature sets in addition to a header feature set using a classification-based device identification framework. Various machine Learning algorithms have been adopted to identify different combinations of these feature sets to provide enhanced security in IoT devices. The proposed method has been evaluated through normal and under-attack circumstances by collecting real-time data from IoT devices connected in a lab setting to show the system robustness. MDPI 2021-04-10 /pmc/articles/PMC8069928/ /pubmed/33920110 http://dx.doi.org/10.3390/s21082660 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yousefnezhad, Narges Malhi, Avleen Främling, Kary Automated IoT Device Identification Based on Full Packet Information Using Real-Time Network Traffic |
title | Automated IoT Device Identification Based on Full Packet Information Using Real-Time Network Traffic |
title_full | Automated IoT Device Identification Based on Full Packet Information Using Real-Time Network Traffic |
title_fullStr | Automated IoT Device Identification Based on Full Packet Information Using Real-Time Network Traffic |
title_full_unstemmed | Automated IoT Device Identification Based on Full Packet Information Using Real-Time Network Traffic |
title_short | Automated IoT Device Identification Based on Full Packet Information Using Real-Time Network Traffic |
title_sort | automated iot device identification based on full packet information using real-time network traffic |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069928/ https://www.ncbi.nlm.nih.gov/pubmed/33920110 http://dx.doi.org/10.3390/s21082660 |
work_keys_str_mv | AT yousefnezhadnarges automatediotdeviceidentificationbasedonfullpacketinformationusingrealtimenetworktraffic AT malhiavleen automatediotdeviceidentificationbasedonfullpacketinformationusingrealtimenetworktraffic AT framlingkary automatediotdeviceidentificationbasedonfullpacketinformationusingrealtimenetworktraffic |