Cargando…
Plasma Metabolome and Lipidome Associations with Type 2 Diabetes and Diabetic Nephropathy
We conducted untargeted metabolomics analysis of plasma samples from a cross-sectional case–control study with 30 healthy controls, 30 patients with diabetes mellitus and normal renal function (DM-N), and 30 early diabetic nephropathy (DKD) patients using liquid chromatography-mass spectrometry (LC-...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069978/ https://www.ncbi.nlm.nih.gov/pubmed/33918080 http://dx.doi.org/10.3390/metabo11040228 |
Sumario: | We conducted untargeted metabolomics analysis of plasma samples from a cross-sectional case–control study with 30 healthy controls, 30 patients with diabetes mellitus and normal renal function (DM-N), and 30 early diabetic nephropathy (DKD) patients using liquid chromatography-mass spectrometry (LC-MS). We employed two different modes of MS acquisition on a high-resolution MS instrument for identification and semi-quantification, and analyzed data using an advanced multivariate method for prioritizing differentially abundant metabolites. We obtained semi-quantification data for 1088 unique compounds (~55% lipids), excluding compounds that may be either exogenous compounds or treated as medication. Supervised classification analysis over a confounding-free partial correlation network shows that prostaglandins, phospholipids, nucleotides, sugars, and glycans are elevated in the DM-N and DKD patients, whereas glutamine, phenylacetylglutamine, 3-indoxyl sulfate, acetylphenylalanine, xanthine, dimethyluric acid, and asymmetric dimethylarginine are increased in DKD compared to DM-N. The data recapitulate the well-established plasma metabolome changes associated with DM-N and suggest uremic solutes and oxidative stress markers as the compounds indicating early renal function decline in DM patients. |
---|