Cargando…
A Semi-Supervised Transfer Learning with Grid Segmentation for Outdoor Localization over LoRaWans †
During the training phase of the supervised learning, it is not feasible to collect all the datasets of labelled data in an outdoor environment for the localization problem. The semi-supervised transfer learning is consequently used to pre-train a small number of labelled data from the source domain...
Autores principales: | Chen, Yuh-Shyan, Hsu, Chih-Shun, Huang, Chan-Yin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070012/ https://www.ncbi.nlm.nih.gov/pubmed/33918695 http://dx.doi.org/10.3390/s21082640 |
Ejemplares similares
-
Modeling the Energy Performance of LoRaWAN
por: Casals, Lluís, et al.
Publicado: (2017) -
LoRaWANSim: A Flexible Simulator for LoRaWAN Networks
por: Marini, Riccardo, et al.
Publicado: (2021) -
Collision Avoidance Resource Allocation for LoRaWAN
por: Chinchilla-Romero, Natalia, et al.
Publicado: (2021) -
Energy Consumption Model for Sensor Nodes Based on LoRa and LoRaWAN
por: Bouguera, Taoufik, et al.
Publicado: (2018) -
An IoT LoRaWAN Network for Environmental Radiation Monitoring
por: Gallego Manzano, L, et al.
Publicado: (2021)